Monte Carlo Tree Search

Simon M. Lucas
Outline

• MCTS: The Excitement!
• A tutorial: how it works
• Important heuristics: RAVE / AMAF
• Applications to video games and real-time control
The Excitement...

• Game playing before MCTS
• MCTS and GO
• MCTS and General Game Playing
Conventional Game Tree Search

- Minimax with alpha-beta pruning, transposition tables
- Works well when:
 - A good heuristic value function is known
 - The branching factor is modest
- E.g. Chess, Deep Blue, Rybka etc.
Go

• Much tougher for computers
• High branching factor
• No good heuristic value function

“Although progress has been steady, it will take many decades of research and development before world-championship–calibre go programs exist”.
Jonathan Schaeffer, 2001
Monte Carlo Tree Search (MCTS)

- Revolutionised the world of computer go
- Best GGP players (2008, 2009) use MCTS
- More CPU cycles leads to smarter play
 - Typically lin / log: each doubling of CPU time adds a constant to playing strength
- Uses statistics of deep look-ahead from randomised roll-outs
- Anytime algorithm
Fuego versus GnuGo
(from Fuego paper, IEEE T-CIAIG vol2 # 4)
General Game Playing (GGP) and Artificial General Intelligence (AGI)

• Original goal of AI was to develop general purpose machine intelligence
• Being good at a specific game is not a good test of this – it’s narrow AI
• But being able to play any game seems like a good test of AGI
• Hence general game playing (GGP)
GGP: How it works

• Games specified in predicate logic
• Two phases:
 – GGP agents are given time to teach themselves how to play the game
 – Then play commences on a time-limited basis
• Wonderful stuff!
• Great challenge for machine learning,
 – But interesting to see which methods work best...
• Current best players all use MCTS
MCTS Tutorial

- How it works: MCTS general concepts
- Algorithm
- UCT formula
- Alternatives to UCT
- RAVE / AMAF Heuristics
MCTS

• Builds and searches an asymmetric game tree to make each move

• Phases are:
 – Tree search: select node to expand using tree policy
 – Perform random roll-out to end of game when true value is known
 – Back the value up the tree
Sample MCTS Tree
(fig from CadiaPlayer, Bjornsson and Finsson, IEEE T-CIAIG)
MCTS Algorithm for Action Selection

repeat N times { // N might be between 100 and 1,000,000
 // set up data structure to record line of play
 visited = new List<Node>()
 // select node to expand
 node = root
 visited.add(node)
 while (node is not a leaf) {
 node = select(node, node.children) // e.g. UCT selection
 visited.add(node)
 }
 // add a new child to the tree
 newChild = expand(node)
 visited.add(newChild)
 value = rollOut(newChild)
 for (node : visited)
 // update the statistics of tree nodes traversed
 node.updateStats(value);
}

return action that leads from root node to most valued child
MCTS Operation
(fig from CadiaPlayer, Bjornsson and Finsson, IEEE T-CIAIG)

- Each iteration starts at the root
- Follows tree policy to reach a leaf node
- Then perform a random roll-out from there
- Node ‘N’ is then added to tree
- Value of ‘T’ back-propagated up tree
Upper Confidence Bounds on Trees (UCT) Node Selection Policy

- From Kocsis and Szepesvari (2006)
- Converges to optimal policy given infinite number of roll-outs
- Often not used in practice!

\[
\text{Select } i_{next} = \arg \max_{i \in \text{children nodes}} \left(\hat{\mu}_i + \sqrt{\frac{\log N}{n_i}} \right)
\]
Tree Construction Example

• See Olivier Teytaud’s slides from AIGamesNetwork.org summer 2010 MCTS workshop
AMAF / RAVE Heuristic

- Strictly speaking: each iteration should only update the value of a single child of the root node
- The child of the root node is the first move to be played
- AMAF (All Moves as First Move) is a type of RAVE heuristic (Rapid Action Value Estimate) – the terms are often synonymous
How AMAF works

• Player A is player to move
• During an iteration (tree search + rollout)
 – update the values in the AMAF table of all moves made by player A
• Add an AMAF term to the node selection policy
 – Can also apply this to moves of opponent player?
Should AMAF work?

• Yes: a move might be good irrespective of when it is player (e.g. playing in the corner in Othello is ALWAYS a good move)

• No: the value of a move can depend very much on when it is player
 – E.g. playing next to a corner in Othelo is usually bad, but might sometimes be very good

• Fact: works very well in some games (Go, Hex)

• Challenge: how to adapt similar principles for other games (Pac-Man)?
Improving MCTS

• Default roll-out policy is to make uniform random moves

• Can potentially improve on this by biasing move selections:
 – Toward moves that players are more likely to make

• Can either program the heuristic – a knowledge-based approach

• Or learn it (Temporal Difference Learning)
 – Some promising work already done on this
MCTS for Video Games and Real-Time Control

• Requirements:
 – Need a fast and accurate forward model
 – i.e. taking action a in state s leads to state s’ (or a known probability distribution over a set of states)

• If no such model exists, then could maybe learn it?

• How accurate does the model need to be?

• For games, such a model always exists
 – But may need to simplify it
MCTS Real-Time Approaches

• State space abstraction:
 – Quantise state space – mix of MCTS and Dynamic Programming – search graph rather than tree

• Temporal Abstraction
 – Don’t need to make different actions 60 times per second!
 – Instead, current action is usually the same (or predictable from) the previous one

• Action abstraction
 – Consider higher-level action space
Initial Results on Video Games

• Tron (Google AI challenge)
 – MCTS worked ok

• Ms Pac-Man
 – Works brilliantly when given good ghost models
 – Still works better than other techniques we’ve tried when the ghost models are unknown
MCTS and Learning

• Some work already on this (Silver and Sutton, ICML 2008)
• Important step towards AGI (Artificial General Intelligence)
• MCTS that never learns anything is clearly missing some tricks
• Can be integrated very neatly with TD Learning
Multi-objective MCTS

– Currently the value of a node is expressed as a scalar quantity
– Can MCTS be improved by making this multi-dimensional
– E.g. for a line of play, balance effectiveness with variability / fun
Some Remarks

• MCTS: you have to get your hands dirty!
 – The theory is not there yet (personal opinion)

• To work, roll-outs must be informative
 – i.e. they must return information

• How NOT to use MCTS
 – A planning domain where a long string of random actions is unlikely to reach goal
 – Would need to bias roll-outs in some way to overcome this
Some More Remarks

• MCTS: a crazy idea that works surprisingly well!

• How well does it work?
 – If there is a more applicable alternative (e.g. standard game tree search on a fully enumerated tree), MCTS may be terrible by comparison

• Best for tough problems for which other methods don’t work