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Abstract. Two steps reinforcement learning is a technique that com-
bines an iterative refinement of a Q function estimator that can be used
to obtains a state space discretization with classical reinforcement learn-
ing algorithms like Q-learning or Sarsa. However, the method requires a
discrete reward function that permits learning an approximation of the
Q function using classification algorithms. However, many domains have
continuous reward functions that could only be tackled by discretizing
the rewards. In this paper we propose solutions to this problem using
discretization and regression methods. We demonstrate the usefulness
of the resulting approach to improve the learning process in the Keep-
away domain. We compare the obtained results with other techniques
like VQQL and CMAC.

1 Introduction

Two Steps Reinforcement Learning (2SRL) is a method to compute the action-
value function in model free Reinforcement Learning [5]. The method assumes a
reduced set of actions and finite trials, where positive and discrete rewards can be
obtained only when a goal area is achieved. It is based on finding discretizations
of the state space that are adapted to the value function being learned, trying to
keep the convergence properties of the discretized methods using non-uniform
discretizations [11]. In this case, we learn the action value function, Q(s, a),
instead of the state value function, V (s), learned in Dynamic Programming [9].
The method is based on two learning phases. The first one is a model free version
of the Smooth Value Iteration algorithm [2], that is called Iterative Smooth Q-
Learning (ISQL). This algorithm, that executes an iterative supervised learning
of the Q function, can be used to obtain a state space discretization too. This
new discretization is used in a second learning phase, that is called Multiple
Discretization Q-Learning (MDQL), to obtain an improved policy. Performing
both phases demonstrated more accurate results in different domain [5].

However, the method presented a main drawback: it requires a discrete reward
function. Using such discrete reward function permits ISQL to learn a function
approximation of the Q function applying classification algorithms such as J48,
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an algorithm to learn decision trees [10]. However, many domains, like Keep-
away, have continuous reward functions. In this case, 2SRL needs to discretize
the reward space by hand, and to test different discretizations to obtain an
accurate one.

To apply the same ideas of 2SRL in domains with continuous rewards re-
quires that the function approximation used in the ISQL phase be a regression
approach. As before, the approximation method should generate a discretiza-
tion of the state space, so such discretization can be used in the second learning
phase. Fortunately, there are different approaches in the literature for regres-
sion that generate state space discretizations of the input space. Classical ones
are M5 [10] or PART [4], which generate regression trees and regression rules
respectively.

In this work we adapt the original 2SRL algorithm to deal with domains
with continuous rewards. Specifically, we use Keepaway [8], a sub-task of the
RoboCup simulator, to perform the evaluation. We compare the new approach
with the original algorithm (using discretized rewards), and also with previous
approaches like VQQL [3] and CMAC [8], obtaining very compiling results.

This paper is organized as follows. Section 2 describes the algorithm 2SRL
in domains with continuous rewards. Section 3 shows the evaluation of the new
approach. Last, Section 4 describes the main conclusions.

2 Two Steps Reinforcement Learning in Domains with
Continuous Rewards

The use of 2SRL requires, mainly, the adaptation of the Iterative Smooth Q-
Learning algorithm (ISQL). ISQL is derived of the Discrete Value Iteration [1],
where a function approximator is used instead of the tabular representation of
the value function, so the algorithm can be used in the continuous state space
case. The algorithm is described in Figure 1. The update equation of the Q
function used is the stochastic Q-Learning update equation. The figure shows
the adapted version of the original ISQL algorithm to permit continuous rewards.

The algorithm assumes a discrete set of L actions, and hence, it will generate
L function approximators, Qai(s). It requires a collection of experience tuples,
T . Different methods can be applied to perform this exploration phase, from
random exploration to human driven exploration [7]. In each iteration, from the
initial set of tuples, T , and using the approximators Q̂iter−1

ai
(s), i = 1, . . . , L,

generated in the previous iteration, the Q-learning update rule for deterministic
domains1 can be used to obtain L training sets, T iter

ai
, i = 1, . . . , L, with entries

of the kind < sj , cj > where cj is the resulting value of applying the Q update
function to the training tuple j, whose state is sj .

In the first iteration, Q̂0
ai

(s) are initialized to 0, for i = 1, . . . , L, and all s ∈ S.
Thus, when the respective cj are computed, they depend only on the possible
values of the immediate reward, r.

1 The Q-learning update rule for stochastic domains can be used too.
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Iterative Smooth Q-Learning with Regression

– Inputs:
1. A state space X
2. A discrete set of L actions, A = {a1, . . . , aL}
3. A collection T of N experience tuples of the kind < s, ai, s′, r >, where s ∈ X

is a state where action ai is executed, s′ ∈ X is the next state visited and r is
the immediate reward received

– Generate L initial approximators of the action-value function Q̂0
ai

: X → R, and
initialize them to return 0

– iter = 1
– Repeat

• For all ai ∈ A, initialize the learning sets T iter
ai

= ∅
• For j=1 to N, using the jth tuple < sj , aj , s′

j , rj > do

∗ cj = αcj + (1 − α)maxar∈A γQ̂iter−1
ar

(s′
j)

∗ T iter
aj

= T iter
aj

∪ {< sj , cj >}

• For each ai ∈ A, train Q̂iter
ai

to approximate the learning set T iter
ai• iter = iter + 1

Until rmax is propagated to the whole domain
– Return Q̂iter−1

ai
, ∀ai ∈ A

Fig. 1. Iterative Smooth Q-Learning algorithm for domains with continuous rewards

The discretizations obtained in this first phase can be used to tune, in a
second phase, the action value function obtained in the previous phase, following
a multiple (one per action) discretization based approach. This second phase was
called Multiple Discretization Q-Learning (MDQL).

The figure 2 shows how to move from the first scheme to the second one,
when an approximation like M5 Rules has been used, and L rule sets have been
obtained (one for each action). Then, we transform the RuleSet obtained by a
M5 model tree/rules into a M5 regression tree/rules called RuleSet’. We apply
this transformation because the M5 model tree/rules uses a linear regression
model on the right part of the rule and we want to obtain a numerical value.
If we use the M5 regression tree/rules we get a number of the right part of the
rules. That could be more useful in the MDQL phase. The left part of the rules
of the approximator RuleSet’ i will be used as the discretization Di(s), and the
right part of the rules of RuleSet’ i will be located in column i of the generated
Q table, providing an initialization of the Q table in the second learning phase2.
Each RuleSet’ may have a different number of rules, so the number of rows of
the table is given by the maximum number of rules of the L approximators, and
zero values can be used to complete the columns with less rules.

Once the translation from the first scheme to the second one is done, a new
learning phase can be executed using the Q-learning update function shown in
equation 1.

Q(st, at) → Q(st, at) + α[rt+1 + γmaxaQ(st+1, a) − Q(st, at)] (1)

2 We also can initialize to 0 and not to use the right part of the rules.
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Fig. 2. The two steps of the 2SRL algorithm with Regression

The second learning phase can be executed with new experiences or with
the same ones used in the first phase. In the experimentation performed next,
the first approach is applied using new experiences. This second phase can be
executed exactly as it was defined in the original 2SRL algorithm, so additional
explanation of this phase, and how to connect both phases, can be found in the
literature [5].

3 Evaluation

To evaluate the new approach, we use the Keepaway subtask of the RoboCup
domain [8].

3.1 Keepaway Domain

In this subtask, the keepers try to maintain the possession of the ball within a
region, while the takers try to gain the possession. An episode ends when the
takers take the possession or the ball leaves the playing region. When an episode
ends, the players are reset for another episode. In our experiments each keeper
learns independently. From a point of view of a keeper, an episode consists of a
sequence of states, actions and rewards:

s0, a0, r1, s1, ..., si, ai, ri+1 (2)

where ai is selected based on some perception of si. We reward the keepers
for each time step which they keep possession, so we set the reward ri to the
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number of time steps that elapsed while following action ai−1 : ri = ti − ti−1.
The keepers’ goal is to select an action that the remainder of the episode will be
as long as possible, and thus maximize the total reward.

The state space is composed of several features that can be considered contin-
uous. These features use information derived from distances and angles between
the keepers, takers and the center of the playing area. The number of features
used for each state depends on the number of players. In 3vs2 there are 13 fea-
tures, in 4vs3 there are 19 and in 5vs4 there are 25 features. In the experiments,
we use VQ, CMAC and 2SRL as methods for state space generalization in order
to improve the learning process. The action space is composed by two different
macro-actions, HoldBall() and PassBall(ki) where ki is the teammate i.

3.2 Results of Two Steps Reinforcement Learning in RoboCup
Keepaway

We use both M5 and J48 (C4.5) algorithms to make an approximation of the Q
function for each iteration in the ISQL phase. In the case of J48 [10] we have
discretized the reward function by hand, and we have applied the original 2SRL
algorithm. For M5 [10], we use the adapted version proposed in this paper. The
approximator obtained in ith iteration is used as a state space generalization
in MDQL and the reward tuples are updated with the stochastic Q-Learning
update function. The first tuple set was obtained with a random policy working
in the keepaway domain.

The parameter setting for 2SRL is the following: γ = 1, α = 0.125. An
ε − greedy strategy is followed, increasing the value of epsilon from 0 (random
behaviour) to 1 (fully greedy behaviour) by 0.0001 in each episode. The size of
the playing region is 25 × 25. The Q table is initialized to 0. In 3vs2, we obtain
the results shown in Figure 3.

Fig. 3. The two steps of the 2SRL algorithm with M5 and J48
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Fig. 4. Evolution of the number of leaves for ISQL-M5

Fig. 5. Evolution of the number of leaves for ISQL-J48

In the graphs, there are four learning curves using ISQL-M5, ISQL-J48, 2SRL-
M5 and 2SRL-J48. The y-axis is the average episode length when a stable policy
is obtained and the x-axis is the ISQL iteration. The ISQL-M5 curve was gener-
ated using M5 model trees obtaining a very good improvement. The ISQL-J48
curve was generated using the best discretization of the reward space obtained
with 88 classes and the performance is worse than M5 model. However, M5
model tree generates a very small state space discretization (Figure 4). For this
reason, we transform the RuleSet into RuleSet’ like we explain in section 2.
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The trees generated with J48 algorithm have too many leaves (≈ 12000 per
action) and the tree leaves are used as space state discretization. We need a
smaller discretization more useful for the second phase of 2SRL. We apply dif-
ferent pruning methods to curb the tree growth and to stabilize the space state
discretization (Figure 5).

When we use tuned M5 and J48 (88 classes) trees in MDQL we obtain better
results than M5 and J48 (88 classes) without tuning. We can see in Figure 3 that
the trees obtained from the last iterations of ISQL are more useful in MDQL
than the first ones. In the experiments, M5 obtains better or similar results than
the best configuration of J48 for ISQL and 2SRL respectively.

3.3 Comparison with Different Approaches

In this section we compare 2SRL with other techniques: the best configurations
obtained by hand for VQQL [3] and CMAC [8].

In the experiments presented in this report, 2SRL and VQQL obtain similar
results in spite of to be very different techniques. The best VQQL experiment has
64 states and 2SRL has 274(M5) and 553(J48) states. In complex domains with
a large state space, the choice of the discretization method may have dramatic
effect on the results that we obtain. For this reason, the state representation is
chosen with great care. In our experiments we have used ISQL-2SRL to tune
the state space discretization obtained from M5 and J48 algorithms. CMAC
results [8] are better than 2SRL and VQ results in 3vs2 (Figure 6).

Fig. 6. CMAC, VQQL, 2SRL algorithm with M5 and J48
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4 Conclusions

In this paper we have applied two steps reinforcement learning in Keepaway
domain. Keepaway domain has continuous rewards and we have adapted the
original 2SRL algorithm to deal with domains with continuous rewards. We use
M5 and J48 to approximate the Q function in the first phase and we use the
same approximators as discretization of the continuous keepaway state space,
obtaining very successful results. In the experiments, we present the result of the
best J48 discretization obtained after an exhaustive experimentation evaluating
different discretizations of the reward function. M5 does not need to discretize
by hand the reward space and it obtains better or similar results than J48. We
have shown that 2SRL can be used in complex domains with continuous rewards
obtaining better results than using only the first phase of the algorithm.
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