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1. INTRODUCTION

Automated Planning deals with the task of finding ordered sets of actions that allow a system to
transform an initial state to a state satisfying a goal specification [Ghallab et al. 2004]. These sets
of actions are referred to as plans in the deterministic setting and policies in the non-deterministic
setting. In deterministic planning (the focus of this paper), finding a plan, or even deciding its exis-
tence, has been shown to be PSPACE-complete unless severe restrictions take place [Béackstrom and
Nebel 1995; Bylander 1994]. Therefore, extensive research has been devoted to efficiently obtaining
plans. Over time, many alternative approaches have risen to improve the efficiency of planning sys-
tems, such as domain-independent heuristics [Bonet and Geffner 2001; Hoffmann and Nebel 2001]
or learning domain-dependent knowledge in various forms [Jiménez et al. 2012; Zimmerman and
Kambhampati 2003]. In this paper, we focus on learning by Case-Based Reasoning (CBR) applied
to Automated Planning, an approach also known as Case-Based Planning (CBP), or planning by
reuse.

The fundamental observation in CBP is that for many real domains the types of problems that
should be solved do not vary much and tend to recur. Thus, one can expect that previous solutions
to similar problems will be useful when solving new problems. For example, this is true when a
new problem involves very similar goals, or starts from a similar initial state to a previously solved
one. This situation commonly appears due to a slight variation of goals during plan execution or
due to execution failures. Then, it might be more efficient to adapt the plan in execution rather
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A2 D. Borrajo, Roubickova & Serina

than to re-plan from scratch. In the extreme, one might even base the whole planning process on
the modification of plans, an approach named planning from second principles [Nebel and Kohler
1995]. Indeed, CBP does not need to generate a plan from scratch; instead, it exploits the knowledge
in plans that were generated before whenever it is advantageous. This leads to several technical as
well as theoretical challenges, such as how to define and check for similarity, how to adapt a previous
solution, or how to estimate efficiency and measure quality of the reuse.

A (purely) case-based system is greatly dependent on the level of reusability of the previously
solved instances; this dependency is captured by two assumptions commonly made in the case-
based community: problems tend to recur (and hence there is a chance that the additional work on
retrieving, adapting and storing solutions will eventually pay off); and the world is regular, which
means that similar problems have similar solutions (so that if one starts from a solution to a similar
problem, the solution will be found with little computational effort).

Since the first works on planning, there have been many approaches in the line of CBP [Alter-
man 1990; Hammond 1990]. However, the theoretical research [Liberatore 2005; Nebel and Kohler
1995] revealed that CBP is not capable of improving over the generative planning approach in terms
of worst-case complexity and the first enthusiasm faded. Even though these results are true in the
worst-case scenario, these studies did not fully exploit the restrictions stemming from the case-based
settings (such as regularity of the world and recurrence of similar problems). In some settings, the
use of a case base may indeed lead to significant improvements, as it has been discussed using com-
plexity analysis [Au et al. 2002; Kuchibatla and Mufioz-Avila 2006], or from a practical point of
view [van der Krogt and de Weerdt 2005; Veloso and Carbonell 1993]. Thus, CBP offers a potential
heuristic mechanism for handling intractable problems.

Our goal is to describe the progress of domain-independent CBP and some of the main alterna-
tives explored over time. By domain independence we understand the possibility to use the same
system in many different domains, without changing its code. Nevertheless, some of the planners
require more information about the domain than others, such as those based on Hierarchical Task
Networks (HTN). In this paper, we will mainly focus on domain-independent planners that take
as input STRIPS domain and problem representations. For completeness, we will also cover some
planners based on HTN representations and some systems that deal with other planning tasks, such
as planning and execution. Spalazzi [2001] wrote a survey that provided an exhaustive taxonomy
of all case-based planners up to 2001, based on the different CBP features. Complementary to his
work, other surveys can be found in [Cox et al. 2005; Muifioz-Avila and Cox 2008; Veloso et al.
1996]. The difference of this paper with those surveys is that they: compare in depth only very few
of the most important planners [Veloso et al. 1996]; are short papers [Cox et al. 2005]; or focus on
only one aspect, such as plan adaptation [Muifioz-Avila and Cox 2008]. We describe each system as
a whole and we outline how and where it fits into the taxonomy suggested by Spalazzi, as opposed
to his work, whose focus was on possible implementation alternatives of the case-based steps. We
also cover new planners that were built after Spalazzi’s study. In the final section, we present an
updated version of Spalazzi’s tables with the recent works.

We identify the interaction among the different phases of the CBP process and present successful
implementation choices both from theoretical and application points of view. As the planners under
consideration were developed over the last twenty years, it is virtually impossible to perform an
experimental comparison. Instead, we examine them from a theoretical point of view, we discuss
the differences among them and show their behaviour on an example. We use a running example
throughout the whole section to highlight the differences among the planners.

In the rest of this section, we provide a necessary background in Automated Planning, which is
a subfield of Artificial Intelligence (AI), we describe the standard case-based methodology, which
is used in some fields of Al to implement a reuse of previous experiences, and we show how it can
be applied to Automated Planning. Then, we provide an example which will be used throughout the
rest of the paper to show the behaviour of various CBP systems.
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1.1. Planning Formalisation

The task of automated planning is commonly defined in its propositional setting by the following
decision problem.

Definition 1.1. An instance of a propositional planning task is a tuple II = (F, A, Z,G)
where:

— F is a finite set of ground atomic propositional formulae;

— A is a finite set of actions;

— 7 C Fis aset of propositions that are true in the initial state; and
— G C Fis aset of literals specifying the goals.

In order to solve planning tasks, planners need to receive these instances as inputs. Given that
fully defining the tasks can be quite cumbersome, the planning community has defined a standard
modelling language, PDDL (Planning Domain Definition Language) [Gerevini et al. 2009]. It allows
users to specify planning models as two inputs (files): a domain, that includes a set of predicates
and a set of actions; and a problem, that includes the specific objects involved in the planning task,
the initial state and the goals. More formally:

Definition 1.2. A planning domain is a tuple D = (P, Op), where

— P is afinite set of predicates;
— Op is a finite set of operators, where each operator o € Op is a rule pre(o) = post(o), where
pre(o) and post(o) are the following sets:
— pre(o) C P are the operator’s preconditions,
— post(o) C P are the operator’s postconditions, or effects. They are divided in positive effects
add(o) (become true when the operator is applied) and negative effects del(o) (become false
when operator is applied).

Definition 1.3. A planning problem is a tuple P = (O, I, G), where

— O is a finite set of objects;
— I is a set of propositions that are true in the initial state; and
— G is a set of literals specifying the goals.

Given a domain D, and a problem P, current planners automatically generate the equivalent
propositional planning task, IT = (F, A,7Z,G), by instantiating (grounding) the formulae in D,
similarly to the STRIPS formalization [Fikes and Nilsson 1971]. Using the objects in the problem,
O, planners instantiate all predicates in P, obtaining F. Also, using objects in O and the operators
in Op, planners instantiate all operators’ schemata to obtain all actions in \A. Z is the initial state [
and the goals G are G.

7 is a fully specified state, as interpreted under the closed world assumption — the propositions
present in Z are the only propositions that are true in the initial state, and all other propositions of
F are assumed to be false in the initial state. On the contrary, G is only a partially specified state,
where propositions from G have the truth-value as specified while the other propositions have an
arbitrary truth-value.

An action @ € A can be applied in a state s only if its preconditions pre(a) are met, that is,
if pre(a) C s. The application of a in s yields a state s’ where post(a) hold and the rest of the
propositions remain the same as in s, formally, s’ = apply(a, s) = s\ del(a) U add(a).

After receiving a planning problem as input, planners generate a sequence of actions m =
(a1,...,ay), called a plan, as output. 7 solves the planning task IT if the iterative application of
the actions in the plan transforms the initial state into a state where the goals are true. So, there is a
decision problem, PLANSAT, whose goal is to check whether there exists a sequence of actions that,
when applied to the initial state Z, yields a state that satisfies the goals G. The related optimisation
problem is formalised as PLANMIN and asks whether such a sequence consists of at most k actions.
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If n < k, a solution plan is also a positive instance of PLANMIN. Both PLANSAT and PLANMIN
have been shown to be PSPACE-complete problems [Bylander 1994] in their general form.

1.2. Case-Based Methodology

CBR is a field of Al that uses past experiences to solve new problems, assuming that similar prob-
lems have similar solutions [Aamodt and Plaza 1994; Leake 1996; de Mantaras 2001]. CBR sys-
tems have at their disposal a set £ of previously solved problems constituting the experience of
the system, called case base. Every case is a pair consisting of a problem description and some
problem solving knowledge that could help solve future similar problems. The problem description
comprises any knowledge (e.g. features) that is relevant for defining a task in any representation
paradigm (though all the surveyed systems here use predicate logic). The problem solving knowl-
edge can take the form of the solution to the problem or it can contain some reasoning information,
e.g., about how the solution has been found previously, or why the solution has some particular
shape.

CBP is a type of CBR, which uses the stored experiences to lower the high complexity of solving
the planning tasks [Cox et al. 2005; Hammond 1990]. A case in this setting is composed of a
problem description (referred to as problem and denoted by II) and reuse information (denoted by
©). Usually, the reuse information consists of the problem solution, but some systems use other
information as well.

In order to benefit from storing and reusing past solutions, a case-based system needs to efficiently
implement several steps organised in the so-called case-based procedure (see Fig. 1, where the
updated case base — £ on the right — is the input to new CBR episodes). Here, we describe the
objective of each of its phases and briefly outline different implementation choices that suit planning
applications. The resulting categorisation was introduced by Spalazzi [2001] and is repeated here,
because we use it later in the planners’ descriptions.

Problem New case
11 c
RETRIEVE o REUSE - REVISE RETAIN r
£ Retrieved Proposed £ Updated
Case base candidate cases solution Case base case base

Fig. 1. The case-based procedure.

1.2.1. CBR Procedure. In this section, we will cover the main steps of the CBR process: retrieve,
reuse, revise, and retain. When a case-based system faces a new problem, it queries the case base to
find analogous cases (Retrieve). There are several ways to identify such cases: associative retrieval
uses the features of the cases to assess the suitability of a case; e.g., by using a similarity metric [de la
Rosa et al. 2013; Hanks and Weld 1995]. Hierarchical retrieval uses a hierarchical ordering of the
features, proceeding from the more general to the more specific ones; e.g., the indexing-based re-
trieval [Serina 2010; Tonidandel and Rillo 2002; Veloso 1994]. Goals, initial states and/or encoun-
tered failures are the most frequent features used for retrieval purposes. Domain-dependent planners
may implement model-based retrieval, where the domain-dependent knowledge may be used to gen-
eralize the current problem to find a better match among the cases. All these techniques can also be
combined using hybrid retrieval. In planning applications, a key issue is objects’ identification. It is
highly probable that cases, even from the same domain, are grounded over different sets of objects,
or that the grounding was implemented differently, resulting in different naming conventions in dif-
ferent cases. Thus, the first step of the retrieval phase often consists of fitting the objects of the two
problem descriptions to each other as closely as possible. Depending on the implementation, the
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task may be realised either as unification [Hanks and Weld 1995; Kambhampati and Hendler 1992;
Kohler 1996], or as object matching [de la Rosa et al. 2013; Nebel and Kohler 1995; Serina 2010].

The objective of the Reuse step is to repair faults of the retrieved solution when applied to the
current problem. As this step may modify the previous solution, it is also referred to as adaptation.
Different approaches have been considered in the literature for plan adaptation. Spalazzi [2001]
identifies the following categories. The first group of approaches uses non automated adaptation;
the system simply copies the stored solution, or lets the user adapt it manually. The systems that
attempt to automatically produce applicable solution plans can be divided into those that perform
transformational, derivational or hybrid adaptation. Transformational adaptation attempts to repair
the retrieved plan by means of constraint satisfaction, heuristics, plan generation, merging or recur-
sive case-based approaches. Some of these systems attempt to reuse the pieces of the previous plan
that are still valid and modify, remove, or add new actions for the previous actions that fail in the
new conditions [Hammond 1990; Hanks and Weld 1995; Kambhampati and Hendler 1992]. Others
perform more dynamic plan changes using a deterministic [Likhachev and Koenig 2005; van der
Krogt and de Weerdt 2005] or stochastic [Borrajo and Veloso 2012; Fox et al. 2006] sequence of
plan modification operators that try to repair the failed plan. Alternatively, the system can try to
replay decisions that were successful in the search for the solution found in the case base, yielding a
derivational adaptation [de la Rosa et al. 2013; Veloso 1994]. Another alternative consists of using
a hybrid approach that combines several of the above mentioned techniques.

The revision step (Revise) can be divided into two subtasks: verification of the adapted solution
and its possible repair. The verification step checks for the failures that may occur during plan
execution, preventing the plan from producing the expected result. It may be addressed by simulated
execution, formal verification or by the execution itself, depending on what the system’s repair
procedures support. Consequently, Spalazzi [2001] distinguishes systems verifying the plans in the
real world [Kambhampati and Hendler 1992], in the model [Veloso 1994] or in the case base,
where the last approach searches for failures of similar problems recorded in the case base. In
addition, the solution may also be evaluated externally, by a teacher. The teacher is a human expert
often needed in domains where the correctness of the plan is crucial, such as medical diagnoses and
therapy. In such settings, the automatically found solution may need to be approved by a responsible
person. When a failure is discovered, the system may simply abort the plan, or attempt a repair.
The repair can be then performed either by a user [Veloso 1994], or by the system itself (self-
repair) [Kambhampati and Hendler 1992].

The retention phase (Retain) is responsible for building and maintaining the case base so that the
system can retrieve cases more efficiently and the retrieved cases are of higher quality. Depending
on the criteria that guide this phase, in [Leake and Wilson 1998] its authors distinguish two types of
case-base maintenance techniques — the quantitative criteria (e.g., time) lead to performance-driven
policies, while the qualitative criteria (e.g. coverage) lead to competence-driven policies.

In planning, the retention scheme is usually one of the extreme ones: either all solutions are
included in the case base; or a pre-built case base, which is maintained fixed during the lifetime of
the system, is used and the new solutions are discarded. Accordingly, Spalazzi [2001] presents only
one selection strategy for deciding which solutions to keep and which to discard; it is decided by the
user. If the new solution is to be stored, the relevant data is extracted first, but the implementation
of the extraction depends on the implementation of the adaptation and retrieval, as well as on the
organisation of the case base. The extracted data (that is, the new case) is then inserted into the case
base in a memory-efficient manner, using either no arrangement, simply accumulating one case
after another, or arranging the cases by metric information, adjusting the index, or leaving the task
to the user to re-arrange the case base manually.

Muiioz-Avila studied the case retention problem in order to filter redundant cases [Mufioz-Avila
2001]. His approach was based on the observed computational effort when solving the new prob-
lem. In [Gerevini et al. 2013a] the authors formally differentiated between the online and offline
approaches to the case-base maintenance problem and proposed different policies to perform the
maintenance that are guided by different qualitative and quantitative criteria.
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1.2.2. Complexity of CBP. In this section, we will shortly present some complexity results on
CBP. The complexity of propositional planning has been widely studied in the literature. In its
most general form, it was proven to be PSPACE-complete [Bylander 1994]. If severe constraints
on the form of the operators are fulfilled, one can guarantee polynomial time or at least NP-
completeness [Backstrom and Nebel 1995; Backstrom et al. 2012; Bylander 1994]. Possible ap-
proaches to address the high complexity of planning involve developing heuristics and learning
domain-dependent knowledge from experience. CBP is one of such heuristic approaches. Regard-
less of the precise underlying formalisation, there are two main approaches to CBP, whose funda-
mental difference is in the way they adapt the stored plan to solve the current problem: conservative
and generative plan adaptation.

Conservative plan adaptation tries to reuse as much of the known plan as possible [Kambhampati
and Hendler 1992]. It turns out that such adaptation may be very expensive given that the identi-
fication of the “maximal reusable part” is a source of additional hardness. It may make the plan
adaptation even more expensive than the traditional plan generation [Nebel and Kohler 1995] for
some fragments of planning languages. Moreover, the quality of the solution strongly depends on
the correspondence between the case being reused and the current problem, which is influenced by
the way the case is retrieved from the case base as well as by the case base itself, or rather by its
competence.

Generative plan reuse treats the case as a hint that can, in the extreme, be fully ignored and the
solution can be generated from scratch [Serina 2010; Tonidandel and Rillo 2002; Veloso 1994].
Indeed, the results obtained with extensions of Universal Classical Planning (UCP [Kambham-
pati and Srivastava 1996]) confirm that non-conservative plan reuse is at most as hard as classi-
cal planning. Using DERUCP, an algorithm which models derivational analogy (e.g., as used by
PRODIGY/ANALOGY in Sec. 5) for STRIPS-style planners, Au et al. [2002] show that the search
space produced by derivational adaptation can be exponentially smaller compared to the search
space required by transformational adaptation. TRANSUCP [Kuchibatla and Mufoz-Avila 2006]
formally models transformational analogy and shows that such a modification of the UCP algo-
rithm does not require conservativeness of the reuse. Hence, it does not deteriorate its worst-case
complexity.

De Haan er al. [2013] have noted that the framework of the worst-case complexity is not particu-
larly well suited for studying plan reuse in the CBP settings, where the system is very likely to have
at its disposal a solution plan that is similar to the plan it is looking for. In the worst case, of course,
even the most similar plan is not useful at all [Liberatore 2005]. Therefore, they use the framework
of parametrized complexity, where the parameter captures different notions of plan similarity. Plan
reuse in their work assumes that the whole stored plan is used and the system tries to find only a
prefix and a suffix of actions to connect the plan with the new initial state and goals. The results
show that such a plan reuse is provably tractable only if the number of actions used in the prefix and
suffix of the new plan is low and the actions are selected from a (relatively) small set.

1.3. Running Example

The example used in this paper is from the Depots domain introduced in the 3rd International Plan-
ning Competition [Long and Fox 2003]. This domain can be considered a combination of two other
well-known planning domains: the Transportation (or Logistics) domain and the Blocksworld do-
main. In Depots, trucks transfer crates of goods among several locations. Similarly to blocks in
Blocksworld, the crates need to be lifted in the source location and loaded onto a truck, and after
the truck arrives to its destination, it needs to be unloaded and the crates dropped onto other crates
or onto pallets which efficiently serve as a Blocksworld table with limited space. The crates are
moved by hoists present at each location, where the hoists play the same role as the robotic arm in
Blocksworld, for loading and unloading objects to and from the trucks.

The Depots domain is typed, which means that not all objects can be interchanged because they
are of different types. In Depots, there are types such as Truck or Pallet, but the domain can
be converted to an untyped one by replacing the type statements by propositions. For instance, in
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the PDDL description, we could replace (:objects truck0O truckl — Truck) by propositions
(is-truck truckO), (is-truck truckl). This simple conversion allows us to use the same ex-
ample also for the systems that do not allow typed objects.

Figure 2 depicts a planning problem in the Depots domain with the corresponding PDDL descrip-
tion on Figure 3a. A solution plan to this problem, consisting of loading the crates on the trucks and
driving the trucks to the crates destination, where they are unloaded, can be found on Figure 4. In
the remainder of this section, we assume that the planner has encountered this problem in the past
and created a corresponding case, which is now stored in the case base. The new problem that the
planner is trying to solve is described on Figure 3b. The main difference with respect to the previous
one is in the presence of crate2 on top of cratel in depot0, which should be also transported to
distributorO and placed again on top of cratel.

distributor0

palietd palletl

hoisto hoist1
N BN

truckl
truck0

Fig. 2. Example of a problem in the Depots domain, where the initial state is captured on the picture and the goal is to
move both crates to distributor) maintaining the same stack order.

(define (problem casel) (:domain Depot) (define (problem probleml) (:domain Depot)
(:objects depotO - Depot (:objects depotO - Depot
distributorO - Distributor distributorO - Distributor
truckO truckl - Truck truckO truckl - Truck
palletO palletl - Pallet palletO palletl - Pallet
crate0 cratel - Crate crate0 cratel crate2 - Crate
hoistO hoistl - Hoist) hoistO hoistl - Hoist)
(:init (at palletO depot0) (:init (at palletO depot0)
(at palletl distributor0) (at palletl distributor0)
(clear palletl) (clear palletl)
(at truckO depot0) (at truckO depot0)
(at truckl distributor0) (at truckl distributor0)
(at hoistO depot0) (at hoistO depot0)
(available hoist0) (available hoist0)
(at hoistl distributor0) (at hoistl distributor0)
(available hoistl) (available hoistl)
(at crate0 depot0) (at crate0 depot0)
(on crate0 pallet0) (on crate0 pallet0)
(at cratel depot0) (at cratel depot0)
(on cratel crate0) (on cratel crate0)
(clear cratel)) (at crate2 depot0)
(on crate2 cratel)
(clear crate2))
(:goal (and (on crate0 palletl) (:goal (and (on crate0 palletl)
(on cratel crate0)))) (on cratel crate0)
(on crate2 cratel))))

Fig. 3. PDDL description of a) the problem in Figure 2 on the left and b) a new problem on the right.

In the following sections, we describe a variety of CBP systems that have contributed to the evolu-
tion of CBP. We will not necessarily follow the chronological order. Instead, we start by describing
some of the simpler systems to allow the reader to get accustomed to the case-based process. Then,
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(1ift hoistO cratel crateO depotO)

(load hoistO cratel truckO depotO)

(lift hoistO crate0 palletO depotO)

(load hoist0O crate0 truckO depotO)

(drive truckO depotO distributor0)

(unload hoistl crate0 truckO distributor0)
(drop hoistl crate0 palletl distributor0)
(unload hoistl cratel truckO distributor0)
(drop hoistl cratel crate0O distributor0)

Fig. 4. Solution plan for the problem in Figure 2.

we gradually move to more evolved systems and to systems that implement some of the steps of
the case-based methodology in more elaborate ways, explaining the differences with respect to the
systems described before. For each system, we present the case representation, followed by all (or
part of the) four CBR steps (Retrieve, Reuse, Revise and Retain) and a discussion. To conclude the
paper, we summarise the main differences among the surveyed systems and the novelty they in-
troduced, we present several successful domain-dependent applications of CBP and discuss future
directions and open problems for CBP.

2. PRIAR

PRIAR [Kambhampati and Hendler 1992] is not a self-contained case-based planner. Rather it is a
case-based extension of the planner NONLIN [Tate 1977], that is based on hierarchical tasks, such
as HTN [Erol et al. 1994]. HTN planners require richer domain models that involve a hierarchy of
tasks and methods to achieve those subtasks.

PRIAR does not address all the steps usually present in CBP. In particular, the revision and re-
tention phases were not fully implemented. Its focus was on the retrieval and reuse phases, that are
addressed by a domain-independent algorithm. In the retrieval phase, the matching and evaluation
use a similarity metric based on the estimated cost of the modification of a case. PRIAR does not
feature any revision procedure; the proposed solution complies with the known domain theory given
the repair strategies are correct. When execution fails and other unforeseen complications are ob-
served, PRIAR invokes a special replanning procedure which puts an extra emphasis on reusing the
already executed part of the plan; in fact, the initial state of the new problem is the current state of
the execution instead of the former initial state.

2.1. Case representation

PRIAR extends NONLIN, which is a hierarchical planner. This fact is decisive for the choice of the
case and naturally also for the design of the adaptation algorithm. While generating a plan, NONLIN
also produces a validation structure. It is a graph structure linking the tasks’ decomposition, the
initial state and facts forming preconditions and effects of actions. All this information forms the
plan’s explanation that PRIAR stores in its cases.

Each validation links together two nodes, called source and destination, of an HTN used by NON-
LIN. The effect of the source satisfies the applicability condition of the destination. The applicability
condition is then called supported condition and the effect is called supporting effect of the valida-
tion. Such a structure provides an explanation of each proposition in the plan, marking it as either a
precondition of some actions in the plan, or as a goal of the plan.

For example, a validation ((on cratel crate0), ny, (lifting hoistO cratel),nr,) is part
of the validation structure of casel. This validation links the node of the initial state n;, where
(on cratel crate0) is true and forms one of the preconditions of the action 1ift represented by
node ny,,. The node ny,, reduces the high-level task of moving cratel from crate0 to truck0. In
the validation structure, np,, is followed by nodes that continue the reduction by loading cratel to
truckO. There are other validations linked to the node ny,, to capture the rest of the preconditions
of the action 1ift, such as a validation to ensure the availability of the hoist and the fact that the
lifted crate is clear.
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2.2. Retrieval

As many other case-based planners, PRIAR tries to map the objects of the stored problem (case) with
objects of the current problem. As the problem is represented by a set of propositions, the mapping
is realised as unification. The first step, which filters out a number of unsuitable cases, is performed
by a partial unification of the objects of the stored and current problems’ goal descriptions, which
also provides a mapping between the case and the current problem. The second step realises a finer
selection that exploits the validation structure of the case, which is interpreted according to the
previously obtained mapping. The interpretation of the validation structure consists of renaming the
objects as specified by the mapping. The interpreted validation structure can be used to address the
current problem, as the objects of the structure and the current problem correspond to each other.
However, just a simple renaming of objects does not ensure applicability of the validation structure
in the new settings. Hence, the number and type of inconsistencies in the interpreted validation
structure are estimated together with the estimated difficulty of their repair, as it is explained later.
Consequently, the system can discard cases that achieve similar goals by actions that cannot be
applied in the current situation. Such an approach ensures that the planner reuses a significant part
of the validation structure, hence the plan modification is claimed to be conservative.! Also all the
modifications are correct, as they never introduce a new inconsistency into the validation structure.

During the partial unification of problems’ descriptions, some initial facts get annotated as out
facts and new facts, while some goal facts may get annotated as extra or unnecessary goals depend-
ing on whether they are missing in the case or in the current problem. All these annotations refer to
inconsistencies in the validation structure and are addressed by different repair strategies of differ-
ent computational costs. For example, an unnecessary goal indicates a presence of an unnecessary
validation, which can be pruned in order to simplify the validation structure. The corresponding
repair strategy is to remove the validation, which is quite a simple procedure. On the other hand,
some failing validations, which are caused by out facts, that is, facts that are present in the stored
problem but not in the current problem, may be very difficult to repair as they imply undoing some
of the planner’s decisions and deviating the search for a solution plan into a different direction.

For example, the initial facts related to crate2 in Figure 3b are new facts and are added into
the initial state of the case described by the PDDL on Figure 3a, while (clear cratel) is an out
fact which is not satisfied in the new problem and needs to be removed from the description. Note
that in our example, the goals of the new problem extend the goals of the case and hence the case
does not contain any unnecessary goals.> Inconsistencies of the example consist of the new facts
(at crate2 depot0), (on crate2 cratel) and (clear crate2), an out fact (clear cratel),
and an extra goal (on crate2 cratel). There are no unnecessary goals.

Using the “number and type of inconsistencies in the validation structure”, PRIAR heuristically
assesses the costs of repairing the validation structure. The price of the repair can be understood
as a similarity metric, which can also be used in the evaluation phase. While it is common that the
reuse algorithm determines the retrieval strategy, in the case of PRIAR one part of the retrieval effort
(namely the mapping) is used later in the reuse phase, too. One could even view the mapping as the
first step of the reuse, because it marks the inconsistencies on the case’s validation structure. The
adaptation engine of PRIAR directly resolves the inconsistencies without the need of first inspecting
the validation structure and its consistency.

2.3. Reuse

The adaptation phase of PRIAR is realised in two steps. First, the necessary repair actions (called
refit tasks) are suggested, as described above. Even though the effort and the number of actions
needed to repair an inconsistency may be big, the suggested refit tasks are simple because they are

1[Nebel and Kéhler 1995] expose that PRIAR does not identify the maximal reusable part of the stored solution, hence the
reuse is only quasi-conservative.

2 An example of all the annotations and their handling in the Blocksworld domain can be found in the original paper [Kamb-
hampati and Hendler 1992].
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expressed on quite a high level (e.g. achieve[fact], remove[validation]). The result of this step is
a consistent validation structure. However, the validation structure cannot be applied yet because
the implementation of the refit tasks is missing. In other words, the partially reduced validation
structure needs to be fully reduced. For that purpose PRIAR uses NONLIN, where the consistent,
partially reduced validation structure is treated as an intermediate step of generative planning and is
solved as a sub-problem by the hierarchical planner.

In our example, the system suggests to address the extra goal by adding a refit-task
achievelon crate2 cratel] into the plan retrieved from the case. The generative planner is then
called to substitute each such refit-task by a sequence of actions, producing a complete plan.

If needed, NONLIN can backtrack over the whole validation structure and find an unrelated so-
lution plan which ensures that the “satisficing” performance is not affected, i.e., NONLIN with the
addition of PRIAR can solve the same set of problems as NONLIN itself. While the completeness of
the planner remains untouched, the authors claim that in the worst case using PRIAR is as efficient
as using pure NONLIN. They however discuss the difficulty of stating an average improvement in
the “general case”. Under several assumptions they claim even exponential reduction of the solution
search space though.

The main result concerning complexity states that the time needed to obtain a consistent valida-
tion structure by means of refitting tasks is O(n*), where n is the length of the plan. This is due
to the fact that the number of validations is linear to the size of the case (which contains the vali-
dation structure here), but the repair of a failing validation can require up to O(n?) because it may
involve detection of interactions of new validations that appeared during the repair of other missing
validations [Chapman 1987].

Note that even though the authors do not state it explicitly, such a result implies the refitting to be
polynomial also in the length of the problem description because the case base (and consequently
every solution stored within) is assumed to be of polynomial size with respect to the problem’s
description. However, the resulting validation structure is only partially reduced and needs to be
reduced fully in order to be applied to the problem. Reducing such a structure should be less expen-
sive than generating a plan (and its explanation) from scratch according to the authors. Admittedly,
in some scenarios the generative planner may produce a solution that is better than the one obtained
by modification. However, the use of the solution produced by PRIAR may reduce the amount of
used resources with respect to NONLIN, especially when replanning.

2.4. Discussion

Besides being one of the first case-based planners, the main contribution of PRIAR is the retrieval
phase. It offers a heuristic strategy that, besides matching features of the cases and the current
problem, estimates the cost of the adaptation and uses it as a selection criterion to make the retrieval
more informed. Hence we can say that the retrieval is not based entirely on the problem similarity,
but it is guided by the estimated reuse effort as well, making the system less dependent on the
regularity of a domain it is applied in. Note that the hierarchical approach (the full reduction of the
partially reduced validation structure), involves the use of more domain-dependent knowledge than
other case-based planners, even though the algorithms are domain independent.

3. SPA

After PRIAR, Hanks and Weld introduced the Systematic Plan Adaptor, SPA [Hanks and Weld
1995]. Their main aim was to provide a simple framework to study plan modification and therefore
their work does not address the retrieval- and storage- related problems in any great depth.

SPA uses the SNLP planner [McAllester and Rosenblitt 1991], which addresses the planning task
by a search in a space of partial plans. A search for a solution to a given problem can be pictured
as a tree whose nodes correspond to partial plans; every child node represents a plan that solves one
flaw of its parent. The root contains an empty plan for the instance; that is, the description of the
initial state and goals set. And the leaves correspond either to a solution (all the flaws are solved) or
to a failure (all possible refinements are exhausted). If a sufficiently similar case is found in the case
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base, SNLP starts searching from a node corresponding to the retrieved plan applied to the current
problem instead of searching from the node representing an empty plan.

3.1. Case representation

A case in SPA consists of the problem description and a complete consistent solution plan. As SPA
builds the solution from a partial plan, the stored information contains also causal links and con-
straints explaining the ordering of the actions. Hence the plan consists of a set of steps, constraints
and links. The steps are unique appearances of actions and are denoted by S;. The causal links
record the interaction between steps. Every link has a form §; —© S; and denotes that step .S;
achieves the expression (), which is a precondition of step S;. The constraints restrict either the
order of steps (S; < 5;) or a binding of variables ((= v;v;), (# v;v;)). Furthermore, each con-
straint records the reason of introducing the restriction: addition of a step to the plan; addition of a
link among the plan’s steps; or resolution of a threat to an ordering constraint by the negative effects
of another step.

3.2. Retrieval

The retrieval of a case for SPA is a two-steps process — first, a suitable case is found in the case
base, which is then slightly modified to correspond better to the current problem. At first the sys-
tem partially unifies the goal descriptions of the current problem and the stored cases. The main
selection criterion is the number of matching goals. There may be several cases (or one case under
several mappings) matching the same number of goals. Then, the similarity of the initial states is
taken into account. The similarity of the initial states corresponds to the estimated planning work
needed to convert the current initial state to the case’s initial state and is measured by the number of
open preconditions (see the explanation below) which appear in the stored solution after replacing
the initial state with the current initial state. Naturally, the case with the smallest number of open
preconditions is selected. Any remaining ties are broken arbitrarily.

When unifying the goal descriptions, SPA tries to rename constants of the problems under con-
sideration. The authors however note that finding the best matching takes time exponential in the
number of the objects in the description of the case and therefore may cause the whole planning pro-
cedure to be very inefficient. For the exprimental purposes they use a linear time domain-dependent
heuristic [Hanks and Weld 1995].

The selected case is then adjusted to match the current problem as closely as possible. First, the
previously found mapping is applied to the case and the case’s goals are replaced by the goals of the
current problem. The “extra goals” introduce flaws in the plan (called open preconditions) while the
causal links connecting “removed goals” are deleted. Then the description of the case’s initial state is
replaced by the current initial state and more open preconditions are introduced for the facts removed
from the case’s initial state whose effects were needed for some causal links of the solution. The
result is a fitted plan, which is consistent, but probably incomplete. The adjustment step prunes very
little, because the relevance of the constraints and links is not clear until the adaptation is attempted.
However, the conservative pruning strategy (i.e., removal of as many constraints as possible) is
crucial for ensuring completeness of the algorithm.

When SPA retrieves the case corresponding to the problem described in Figure 3a to solve the
problem described on Figure 3b, it marks the goal (on crate2 cratel) as an extra goal, which
introduces an open precondition to the plan presented on Figure 4. Then, the description of the case’s
initial state (Figure 3a) is replaced by the current initial state (Figure 3b) and the system identifies
the facts that were removed, such as (clear cratel). Here, the removed fact introduces an open
precondition, as the fact (clear cratel) is needed for (1ift hoistO cratel crateO depot0),
the first action of the retrieved plan. The retrieval results in a fitted plan, which starts from the current
initial state, achieves the case’s goals and is aware of the incompleteness in the case’s plan.
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3.3. Reuse

The adaptation method is based on a constraint-posting technique of Chapman [1987] and its later
refinement [McAllester and Rosenblitt 1991]. The fitted plan to be adapted constitutes a node in the
search space and the search starts from there instead of traversing the space of partial-order plans in
breadth-first manner starting from the root, as SNLP does.

The plan is modified by two high-level procedures as in standard partial-order planners — the
flaws are repaired by a refine procedure and backtracking is realised by a retract procedure. The
refine procedure selects a flaw in a plan and corrects it; depending on the kind of the flaw, different
repair actions are taken. The open precondition flaw is caused by an action’s precondition which
has no causal support and is addressed by the AddStep repair procedure, adding an action whose
effect is the precondition and an appropriate causal link is established. The threatened link is a
flaw caused by ordering actions so that an action and its desired effect (needed for another action)
may be interleaved with another action, a threat, which cancels the desired effect. Such flaw is
repaired by introducing an ordering preventing the threat to interleave the action and its effect (by
promoting or demoting the threat) or by forcing the objects of the threat not to unify with the objects
of the desired effect. The information about which flaw was repaired, how and at which point of the
search is stored in special data structures to allow the search to be systematic; that is, to consider
every possible partial plan exactly once.

The fitted plan in the example produced by the retrieval step contains flaws that need to
be repaired. The problems are related to the extra goal (on crate2 cratel) and the re-
moved initial fact (clear cratel). They form open preconditions and are addressed by a re-
fine procedure. For example, the flaw related to the extra goal is corrected by adding a step
to the fitted plan so that the newly introduced action introduces as its effect the open pre-
condition. This can be achieved by adding either (drop hoistO crate2 cratel depot0),
(drop hoistl crate2 cratel depot0), (drop hoistO crate2 cratel distributor0) or
(drop hoistl crate2 cratel distributor0) to the plan. The first option leads to a goal loop
and is not further explored. The next two actions achieve (on crate2 cratel), but cannot be used,
because hoist1 is not at depotO and hoistO is not at distributor0, hence the actions’ pre-
conditions will never be satisfied. So, the action to drop the crate at distributor0 by hoist1 is
added, which then forces also the use of the unload action to ensure that the hoist has the crate to
drop, of the load action that places the crate on the correct truck and so on, until crate? is lifted
from cratel in depotO, which, as a side-effect also resolves the remaining open precondition by
making (clear cratel) true.

Based on the properties of SNLP, the adaptation algorithm is proved to be complete, which
means that it will eventually find a solution if one exists. This property is guaranteed by the capa-
bility of the planner to backtrack over any link or constraint in the explanation of the fitted plan,
consequently making it possible to reach the root (empty plan) and explore any other part of the
search tree. Therefore any decision in the solution needs to be retractable. SPA achieves that by
introducing refine and retract procedures modifying the plan to be inverse to each other. Note how-
ever that the retraction procedure guarantees completeness only if the plan is fitted conservatively
(i.e., there are no decisions over which the planner could backtrack) or if the solution was obtained
by a previous run of SPA and hence all the decisions are introduced by the refine procedure and
therefore retractable.

3.4. Retention

The authors assume that a case base is provided to the planner beforehand and is not modified
over time. The only related remarks state that, due to the need of specific supporting structures (as
the explanations), it is easy to store solutions generated by SPA but very hard to include solutions
obtained by other means.

A small but important remark states that theoretically it is worth to adapt plans that contain at
most 40% of inappropriate actions; otherwise, the generative approach is more efficient [Hanks and
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Weld 1995]. This estimation is based on the size of the search space of the transformational approach
compared to the one of the generative approach. CBP reuse can be either transformational, where
the actual solution plan is reused, or derivational, where the system reuses the reasoning about the
solution.

3.5. Discussion

Both, PRIAR and SPA, are very similar in that the retrieval and the consecutive matching of the
problem instances is guided by the same principle, and both present sound and complete adaptation
algorithms. But, the information stored in an element of the case base of PRIAR is significantly more
complex and so is the procedure to remove a flaw. SPA uses plan-space search, whereas PRIAR uses
the hierarchical approach, moving through several levels of plan reduction. Nevertheless PRIAR
seems to outperform SPA on more complex tasks, when only the reuse phase is considered, which
is probably due to including more information on its domain models. Moreover, SPA searches
the plan-space in breadth-first manner while the authors of PRIAR did not offer any study of the
systematicity of the search and the selection of flaws to repair is random. However, the impact of
systematicity on the planner’s performance is doubtful anyway — on one hand it guarantees that
the planner does not reconsider the same plans several times, but it also prevents the system from
quick convergence to the right part of the search space.

4. MRL

MRL (Modification and Reuse in Logic) [Kohler 1996] is a case-based extension of a deductive
planning system PHI [Bauer et al. 1993]. PHI generates plans as constructive proofs of plan specifi-
cations in the temporal logic LLP. Consequently, a plan is a logical formula in LLP. When searching
for a solution, PHI uses proof tactics that help it prune the search space very efficiently and guide
the planning process in a strictly goal-oriented way. MRL is based on a logical formalisation of the
plan reuse process.

4.1. Case representation

LLP is an interval-based modal temporal logic, featuring the modal operators next, sometimes, al-
ways and a binary modal operator chop to sequentially compose formulae. Several control struc-
tures are available, too — iterations, conditionals, as well as local variables. As mentioned be-
fore, a plan is an LLP formula, denoted Plan, and a plan specification is a special form of a for-
mula, [preconditions A Plan] — goals meaning that if Plan is carried out in a state where
preconditions hold, goals will be achieved. PHI generates a plan by building a proof of the plan
specification during which the Plan variable is replaced with a formula satisfying the specification.
To build a case, the plan is enriched by an index used to determine the case’s position in the case
base. The case base is indexed and organised hierarchically.

In the simple example we use here, the formula Plan is a sequence of implications (pre = post)
that represents the actions listed on Figure 4. The formula preconditions is a conjunction of initial
facts relevant for the plan, which, in our example, are all the propositions of the initial state on
Figure 3a. The goals is a formula (on crateOpalletl) A (oncratel crate0). Note however
that MRL is significantly more expressive than this — the presence of modal operators brings a
possibility to define also intermediate goals, or a sequence of goals to happen in a specified order.

4.2. Retrieval

As the case base is indexed, the retrieval process can search it very efficiently. The index to be
used for searching the case base is obtained by mapping the LLP formula of the current problem to
concept descriptions in a terminological logic.

In their work [Nebel and Kohler 1995], the authors devoted quite a significant effort to study
theoretical issues underlying object matching, which is an integral part of retrieval. Here, we just
briefly summarise that the selection of the most suitable case is guided by a similarity function
stmil that counts the number of matching goals between the case and the current problem and the
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problem of selecting the optimal matching reduces to the sub-graph isomorphism problem, which
is known to be NP-hard.

4.3. Reuse

The plan modification is a two-steps process: plan interpretation followed by refitting. Plan inter-
pretation is done deductively by proving relations between initial and goal states of the case and the
current problem, resulting either in a proof that the plan stored in the case can be reused without
further modifications, or a failed proof requiring refitting of the plan. Refitting starts with construct-
ing a plan skeleton from the case. Then, it is extended to a correct plan by building a proof of the
plan specification formula Plan which is instantiated by the skeleton formula.

During the matching step, the system tries to prove that the case is applicable in the current initial
state (precyrrent — Précase) and that the case achieves at least all of the current goals (goal.qse —
goalcyrrent)- If such match is proven, the necessary substitution information is extracted from the
proof and applied to the case, which then solves the current problem. Then the applicability of the
plan follows directly from the proof produced during matching and no further verification is needed.

If the proof of applicability fails, the plan stored in the case is refitted, starting with the extraction
of the information from the failed proof. Based on the extracted information, MRL flexibly removes
and adds actions to the plan, but it performs no reordering operations to avoid expensive compu-
tations of all possible permutations of a given actions’ sequence. If an action occurs in a wrong
position, it is deleted from the plan and subsequently re-introduced during the refitting process.
This refitting strategy is referred to as plan instantiation and leads to remarkable efficiency gains in
comparison to plan generation, especially if the plan to refit is very complex.

In the running example, the proof of applicability fails, because goal.qse = goalcyrrent as the
case described on Figure 3a does not imply the goals related to crate2 present in the current
problem (Figure 3b). Therefore MRL proceeds to refit the plan, in this situation simply by adding
the actions related to loading and transporting crate?2 to the desired destination. However, if in
the current problem the crateO and cratel were swapped in the initial state, the planner would
remove all the actions related to loading cratel and insert them again after the actions loading
crate0, instead of just reordering the initial part of the stored plan (Figure 4).

Differently from previous case-based planners, which address total- or partial-order plans, MRL
can reuse also conditional plans (generated by case analysis) and iterative plans (generated by induc-
tive proofs). MRL ensures that modified plans are correct by performing plan refitting deductively
as an interleaved process of plan verification and plan generation. Plan verification is grounded on a
replay of the proof process. However, the refitting of the plan’s control structure may become very
expensive, e.g., if an operator is inserted into a plan inside a while-loop, the inductive proof that has
led to this while-loop must be replayed in order to verify the correctness of the refitted plan.

The modification of sequential plans in MRL is usually more efficient than the generation from
scratch. Only minimal effort has to be spent on the verification of sequential control structures and
the savings from the reuse of basic actions compensate the effort for plan matching and skeleton
plan construction. This result also holds for the whole reuse process including the retrieval effort.
The modification of iterative plans is always more expensive than planning from scratch because
plan refitting is nearly as expensive as planning from scratch, and furthermore plan matching and
skeleton plan construction require costly inference processes dealing with universally quantified
goals and iterative control structures. Besides restricting the refitting strategy to plan instantiation
(as described in the previous paragraph), there is also another possibility in their work to ensure
efficiency gains for the modification of complex plans. Also the admissible refitting operations can
be restricted so that only some parts of the proofs have to be replayed in order to guarantee the
correctness of the modified plan.

4.4. Retention

Once the current problem is solved by modifying a case, the system creates a new case out of it.
First, the system extracts the resulting plan and the information from the proof tree which extends
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the proof skeleton. Then, the index is computed. Combining the information together, a new case is
created and introduced into the right position in the case base.

4.5. Discussion

Nebel and Kohler performed an experimental comparison of MRL with SPA and PRIAR in the
Blocksworld domain. It shows that MRL performs better than the other two planners, but worse than
its generative component PHI alone. This result is due to the combination of the search tactics of
PHI (and MRL, too) and the tested domains. PHI uses very efficient search tactics and hence it is easy
to outperform the other planners for both PHI and MRL. The fact that MRL is being out-performed
by its generative planner in the Blocksworld domain, however, does not imply that the case-based
approach in the proof deductive system is not worth the extra effort; it is rather a property of the do-
main. For example, in the Mail domain MRL outperforms PHI. We find such result natural, especially
considering that Blocksworld problems are proved to be in PTIME, while the matching problem that
needs to be solved by the case-based approach is Np-hard. Clearly, a well implemented generative
planner should outperform the case-based planner in such a domain, unless a heuristic approach to
the matching problem is implemented. On the other hand in domains with higher complexity of plan
generation, the case-based approach may be beneficial.

Besides outperforming PRIAR and SPA, MRL also provides a formal framework to study plan
reuse and theoretical complexity of related tasks. The use of modal temporal logic introduces the
possibility of specifying temporary goals (valid sometimes during the execution of the plan instead
of at the end) as well as it allows to order the goals in a temporal sense (goal; needs to be achieved
before goals). Lastly, MRL does not always need to verify the plan it produces, which may bring
significant time savings when dealing with long or complex plans.

5. PRODIGY/ANALOGY

The PRODIGY/ANALOGY system [Veloso 1994] extends the planner PRODIGY? [Veloso et al. 1995]
and it is the first case-based planner that executes the whole case-based cycle. The cycle consists of
the following steps: generation/annotation of a case, its storage, retrieval and replay on a new prob-
lem. The first two steps define a case and a structure of a case base and constitute the retention step,
while the later two steps show how to re-use a previously stored solution, describing the retrieval
and adaptation phases. PRODIGY/ANALOGY was used, for instance, in route planning [Haigh et al.
1997].

5.1. Case representation

Differently from the previous planners, PRODIGY/ANALOGY does not adapt a previous solution
plan. It rather tries to repeat the decisions that lead the generative search engine (PRODIGY) to a
successful solution while it searches for a solution to the current problem. This is reflected in the
definition of the case. Besides a solution, a case also contains a derivational trace, which provides
the justifications of the solution and explains the choices made during the search. There are three
kinds of justifications: goal dependencies capturing (partial) ordering among goals, failed alterna-
tives recording search directions that did not lead to a solution and external guidance pointing to
external knowledge which determined a search direction.* The solution is easy to obtain as it is the
solution found by PRODIGY and the derivational trace can be generated by PRODIGY after minor
modifications as well, as it is a record of the internal decisions the search engine makes.

For instance, Figure 5 shows the case structure stored by PRODIGY/ANALOGY for the problem
shown in Figure 2. PRODIGY/ANALOGY is a backward search planner, so it starts from the goals,
finding actions that achieve the goals and checking whether the preconditions of those actions are
true in the current state. By default, it follows a linear planning strategy, so the first solution would

31n the first versions the underlying generative planner was NOLIMIT, a nonlinear planner similar to PRODIGY.
4PRODIGY is able to learn domain specific knowledge and such knowledge can then be used to perform a more informed
search of the solution space.
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move first crate0 to distributorO and then truck0 would come back to pick up cratel and
bring it to distributorO. In order to find the optimal solution (that of using truckO for both crates
at the same time, as shown in Figure 4), we would have to make it search for more than one solution.
In order to compare the representation of cases with other techniques with respect to the same plan,
we will show next the case representation of the optimal plan.

s00 | (on crate0 palletl) | precond-of user s21 | (load hoistO cratel truckO depot0) ‘ relevant-to s19
relevant-to s00  s22 | (LOAD HOISTO CRATE! TRUCKO DEPOTO) ‘

s02 | (drop hoistl crate0 pallet] distributor0)
s03 | (lifting hoistl crate0) ‘ precond-of s02 s23 | (LIFT HOISTO CRATEO PALLETO DEPOTO0) ‘
s05 | (unload hoist1 crateQ truckO distributor() ‘ relevant-to s03 s24 | (LOAD HOISTO CRATEO TRUCKO DEPOTO0) ‘

s06 | (at truckO distributor0) ‘ precond-of s05 $25 | (DRIVE TRUCKO DEPOTO0 DISTRIBUTORO) ‘

s08 | (drive truckO depot0 distributorQ) ‘ relevant-to s06 s26 | (UNLOAD HOIST1 CRATEO TRUCKO DISTRIBUTORO) ‘
s09 | (in crate0 truck0) ‘ precond-of s05 s27| (DROP HOIST1 CRATEO PALLET1 DISTRIBUTORO) ‘
s11 | (load hoistO crate0 truckO depot0) ‘ relevant-to s05 s28 | (on cratel crate0Q) ‘precond-of user

s12 | (lifting hoistO crate0) ‘ precond-of s11 s30 | (drop hoistl cratel crate0 distributorQ) ‘ relevant-to s28

s14 | (lift hoistO crate0 palletO depot0) ‘ relevant-to s12 s31 | (lifting hoistl cratel) ‘precond-ofs.?O

s15 | (clear crateQ) ‘ precond-of s14 $33 | (unload hoistl cratel truck0 distributorQ) ‘relevanl-to s31

s17| (lift hoistO cratel crate0 depot0)
s18 | (LIFT HOISTO CRATE1 CRATEO DEPOTO0) ‘ $35 | (DROP HOIST1 CRATE1 CRATEO DISTRIBUTORO) ‘

s19 | (available hoist0) |precond-of s14

Fig. 5. Case structure generated by PRODIGY/ANALOGY for problem specified in Figure 2. It shows three out of four types
of nodes in PRODIGY/ANALOGY: goal, bindings and applied. We omitted operator nodes for compactness.

relevant-to s15 s34 | (UNLOAD HOIST1 CRATE1 TRUCKO DISTRIBUTORO) ‘

In Figure 5 we only show the main label of each node (search step) in the case for compactness.
There are four kinds of nodes in PRODIGY: goal nodes, where PRODIGY decides which node to
work on next (as nodes s00, s03, s06, ... ); operator (action) nodes, where it decides which operator
to use for a given goal (as nodes s01, s04, ...); bindings nodes, where it decides which objects to
assign to the operator parameters (as nodes s02, s05, ...); and applied operator nodes, where it
executes forward an instantiated operator (as nodes s18, s22, s23, ... ).> As mentioned before, each
of these steps is a more complex structure that includes information on: goal dependencies (as s03
goal depending on s00), failed alternatives (as (drop hoistl, crate0O, palletl, depotO) for
step 02, since palletl is initially at distributor0), and external guidance used (if we would
have used control rules in this execution).

5.2. Retrieval

The case base of PRODIGY/ANALOGY is indexed by two levels of indices. The first level of indexing
uses the goal statement — the goals are partially ordered so that they form independent components
of interacting goals and are connected according to the partial order defined by the solution. On
this level, a hash table is used. The second level is indexed by a set of features of the initial state
that are relevant to the solution (footprint) and is stored as a discriminating network. Therefore, the
system can efficiently distinguish cases that share significant parts of the goal description, but differ
in some relevant parts of the initial state.

For example, PRODIGY/ANALOGY would index the case on Figure 5 by its interacting goals
((on crate0 palletl), (on cratel crate0)), and then by the footprint of the initial state
(all literals from the initial state except those that were not used for finding the solution, which is
(at truckl distributorO) here). If it is the only element in the case base, it would create a
single node of the discriminating network for the initial state of that case pointing to it from the

5We did not show operator nodes in the figure for space reasons.
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corresponding position in the goals hash table (each entry of the hash table would have a pointer to
the root of a discriminating network). As more problems are solved, and their solutions are stored
as cases, they are first indexed in the corresponding position of the hash table. Then, the initial
state of each new problem is compared against the initial state of the root of the corresponding
discriminating network. The intersection of both initial states will remain in the root node, and the
parts that are not common, will go to different branches of the discriminating network.

The similarity metric is not only based on the absolute number of matching goals and initial
facts. It also considers: the interaction among the goals, favouring the cases with the goal interac-
tion more similar to the current one; and the footprint of the initial state of the case. As an example,
if we take problem in Figure 2 as a case in the library and a new problem specified in Figure 3b),
PRODIGY/ANALOGY would compute the distance between the goals of both problems, and the dis-
tance between the footprint of the case and the initial state of the new problem. And it computes it for
each potential substitution. Thus, if we consider the obvious substitution: oy ={(crate0/crate0)
(cratel/cratel)...(truck0/truck0)}, the matching value would be:

570 = 680 + 6%

where 52? = 2, since both problems have two equal goals (under substitution o), and 6g° =13,
since the footprint of the case (complete initial state except for information on truck1 that was not
used) and the new initial state is of 13 literals. Thus, the similarity between both problems would
be §7° = 2 4+ 13 = 15. And, it would be greater than the similarity using o7 ={(crateO/cratel)
(cratel/crate0)...(truck0/truck0)} for instance.

During the retrieval, the system selects a set of cases that address a subset of the current goal
statement and so that the current initial state partially matches the features needed for achieving
the goals. This set is not further filtered by means of an evaluation phase. It was the first system to
retrieve and reuse multiple cases [Veloso 1997].

5.3. Reuse

PRODIGY/ANALOGY also addresses the planning task by searching. Analogous to PRODIGY, the
planner combines a backward-chaining for goal-directed reasoning with simulated actions execu-
tion. The search choices are guided by the corresponding decisions stored in the retrieved cases. The
justification of each decision is interpreted in the current context and if it still holds, the decision is
repeated. When the justification does not hold, the system plans for the new goal using PRODIGY. It
may be that at a decision point, the system has more than one case addressing the decision. One may
adopt different strategies to decide which case to follow or how to merge the guiding information
of several cases at the same time. In PRODIGY/ANALOGY, four strategies were considered: serial,
that reused cases in a given order; round-robin, that reused cases in an alternation order; eager, that
at each node selected to reuse the case that recommends to follow some of the children nodes; and
exploratory, that selected cases to follow randomly at each node.

As an example, suppose the best scenario for the serial strategy. We have two simple cases in
the case base in the Depots domain. In one case, a crate is clear and on a pallet in a given de-
pot and the goal is to have it inside a given truck. The case would include (among other deriva-
tional information) the plan: (1ift hoist crate pallet depot), (load hoist crate truck).
In the second case, a crate is inside a truck, the truck is in a given depot and the goal is to
have the crate at that depot on top of a given clear pallet. The case would include the plan:
(unload hoist crate truck depot), (drop hoist crate pallet depot). Suppose we have
now a new problem where there is a crate initially clear and on top of a pallet in depot1, a truck
is in depot1, and we have to move that crate to depot2. If PRODIGY/ANALOGY retrieved these
two cases as the most similar ones to the new problem, the serial strategy would follow first the
derivation of the first case and load the crate in the truck. Then, it would try to follow the second
case, but the truck is not at depot2. So, it has to interleave some steps of planning from scratch to
include the subgoaling on (at truck depot2), the selection of operator drive and of its bindings,
(drive truck depotl depot?2), and the execution of that action. Finally, it would follow the sec-
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ond case. If it would have used a different strategy for reusing cases, as the round-robin, it would
have created a different search tree. So, as expected, the strategy can influence the results.

5.4. Retention

When a new problem is solved, the case is created by extracting the derivational trace and after
computing the corresponding indices, the case is inserted into the case base. So, retention needs
first to follow the solution path, recording all success decisions made, and their failed alternatives.
Then, since PRODIGY/ANALOGY indexes cases, it has to compute the corresponding indexes (as
explained in the retrieval subsection). First, for the individual goals of the new problem, and next
for their combination. Finally, it has to follow the tree structure that stores the corresponding initial
states to decide where to include the new initial state.

5.5. Discussion

The PRODIGY/ANALOGY system contributed greatly to the field of CBP, by implementing the
whole case-based cycle. While doing so it clearly demonstrates the tight link among the phases
of the CBP cycle, showing how to modify a generative planner to annotate its solutions in order to
be stored and reused later.

The retrieval phase is novel in the use of an indexed case library. Before, the planners only es-
tablished a similarity metric and considered every case in the library in order to identify the most
similar one. By the use of a two level index structure, PRODIGY/ANALOGY can quickly narrow
down the search, eliminating the cases that are likely not very useful. It is also the first time a
possibility to reuse more than just one case is successfully implemented.

Lastly, PRODIGY/ANALOGY approaches the whole problem of plan reuse in a different way than
transformational planners such as PRIAR or SPA. It starts solving the new problem by searching the
solution space and when confronted with a choice, it tries to repeat a choice that has proven to be
successful in a similar situation previously. Such method is called reconstructive and is defined by
the transfer and reuse of the line of reasoning rather than adapting the final solution.

6. FAR-OFF

FAR-OFF is the first case-based planner adopting a heuristic approach to the retrieval and adap-
tation phases. In the retrieval phase, it introduces a novel similarity metric called ADG (Action
Distance-Guided), and the stored solution plans are modified by a heuristic generative system based
on FF® [Hoffmann and Nebel 2001]. Another improvement on the previous planners is the imple-
mentation of the case base update with a maintenance policy based on the competence of the case
base, where the competence is interpreted in the sense introduced in [Smyth and McKenna 2001]
for CBR.

6.1. Case representation

FAR-OFF [Tonidandel and Rillo 2002] models STRIPS-like states, actions and plans in Transaction
Logic [Bonner and Kifer 1995], which is an extension of first-order logic that includes the serial
conjunction operator. A case in such setting is a rule < body, where the body is a serial con-
junction of the case’s preconditions (i.e., the initial state), a plan stored in the case, and the case’s
postconditions (i.e., the goals). The head of the rule 7 represents the case. The plans stored in cases
are always complete and the actions and predicates are grounded, corresponding to the initial state
and goals.

To improve the performance of the retrieval and maintenance phases, some of the stored cases are
marked as footprint elements. The footprint cases have the same competence as the original case
base, but they form a smaller case base. Each footprint case relates to a subset of similar cases,
named Related Set [Smyth and McKenna 1999]. The Related Set is defined by means of a predicate
solves — the Related Set of a footprint element is a set of problems such that their solution can be

6The plan reuse engine is a Delphi implementation of FF.
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obtained by adaptation of the solution of the footprint element; that is, the footprint element solves
the cases from its related set. The union of both sets, the footprint cases and their Related Sets, forms
the original case base. Such division allows quick screening of the case base during the retrieval and
focusing the detailed search into the most promising area of the case base, namely the Related Set
of the most similar footprint element.

6.2. Retrieval

The use of footprint cases effectively creates two levels in the case base. Hence the retrieval pro-
cess proceeds in two steps. First, the footprint elements are considered and the most similar one is
selected. Then, the Related Set of the selected footprint element is considered and the most similar
case (or a set of ordered k£ most similar cases) is chosen to be reused. The selection process does not
implement any matching function. Consequently, a case can be retrieved only if it shares the naming
convention with the current problem. This decreases the usability of the system, even though it leads
to a significant speed-up.

The definition of Related Set closely depends on the definition of the predicate solves. In FAR-
OFF, a case c is said to solve another case, ¢, if and only if the ADG metric value of the case ¢
for solving a problem defined as case ¢’ is less than an upper limit p. The ADG metric estimates
the adaptation effort needed in order to turn the plan stored in a case into a solution of the current
problem (this metric can be seen as an inverse measure of similarity). First, an initial similarity value
(1) is computed, which is an estimation of the actions needed to turn the current initial state into
a state satisfying the initial conditions of the case. Then a goal similarity value (§¢) is computed,
which estimates the distance between the state reached by the application of the plan stored in the
case and a goal state of the current problem. The FF heuristic (the size of the relaxed plan) is used
to estimate the distance between two states. A relaxed plan is the solution of the planning problem
where no deletes of actions are considered. Computing a relaxed plan can be done in polynomial
time, while computing the optimal one is NP-hard. The length of the relaxed solution is an estimate
of the length of the optimal (non-relaxed) solution. The ADG similarity metric is simply a sum of
the initial and goal similarity values.

Obviously, the limit p of the similarity value influences directly the number of footprint cases
of a case-base as well as the number of cases in the Related Set of each case. A high value of p
results in a case base with only few footprint cases, where each footprint case can solve almost all
cases. However, the adaptation costs are likely to be very high. On the other hand, if the value of p
is small, one case could solve only a very limited set of other cases and the case-base would have
many footprint cases with insignificant Related Sets. Hence a reasonable value of p needs to be
chosen if one wants to achieve any significant improvement in the retrieval time.

Considering our running example, we assume for simplicity that the problem case1 is a footprint
case; in this situation when problem1 is presented to FAR-OFF, the system computes the ADG sim-
ilarity metric which estimates the number of actions that are needed to transform casel to a solution
of probleml. The first component of ADG is the initial similarity value (d5). It estimates the sim-
ilarity between the initial state of probleml and the initial relevant facts of casel. Here, the only
relevant fact which is unsupported in casel w.r.t. the initial state of probleml is (clear cratel).
The system then computes a relaxed plan that estimates the adaptation cost; the only action that
belongs to the relaxed plan is (1ift hoistO crate2 cratel depot0).

The second value that needs to be computed is called goal similarity value (0g) and it
is a distance estimation between the goal state of probleml and the final state features of
casel. The unsupported goal is (on crate2 cratel) and the system builds a relaxed
plan with actions (drop hoistl crate2 cratel distributor0O) and (unload hoistl
crate2 truck0O distributor0). Then the total adaptation cost is estimated to be three actions.

6.3. Reuse

FAR-OFF does not attempt to modify the plan stored in the retrieved case. The authors have noted
that such a process may be extremely time-consuming if all the possible permutations of the oper-
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ators need to be considered. Instead, the stored plan is treated as a part of the solution, which only
needs to be completed. Intuitively, the system generates a partial plan that connects the current initial
state with the initial state of the stored plan and another partial plan to connect the case’s goal state
with the current one. The solution plan is then a concatenation of the partial plan from the current
initial state, the stored plan and the partial plan to reach the current goals. To generate the partial
plans, an FF-based generative technique is used. Basically, the reuse phase performs very similar
steps to the ones of the retrieval phase. However, the retrieval phase only estimates the length of the
plans to be concatenated with the stored one, as it considers the length of relaxed plans computed
by an FF heuristic, while during the reuse phase the same heuristic is used to find the solution plan.

The reuse may fail if the partial plan cannot be generated. In such situation, if the retrieval phase
provided a set of k cases to be adapted, the next element is attempted to be reused.

Suppose that casel has been retrieved for reuse; then the system builds a partial plan that
connects the current initial state of probleml with the initial state of casel, which con-
tains the actions (1ift hoistO crate2 cratel depot0O) and (load hoistO crate2
truckO depot0). Similarly, a plan is concatenated at the end of the solution plan of casel
(see Figure 4) in order to solve the goals of probleml; then the system introduces the
actions (unload hoistl crate2 truckO distributor0O) and (drop hoistl crate2
cratel distributor0) in order to produce a complete solution plan.

6.4. Retention

When a new case is introduced into the case base of FAR-OFF, then the competence of elements, the
footprint element set and the Related Sets need to be recomputed using the ADG similarity metric.
To avoid the case base occupying a large amount of space, not all solutions are stored. FAR-OFF
employs a case-deletion policy based on the minimal-injury method. When the number of cases
stored in a case base (or the total amount of space occupied by the case base) reaches a given limit,
the deletion policy is called. The policy chooses in a greedy manner the case that causes the minimal
injury to the competence of the case base and removes it. It repeats this process until the case base
is of a reasonable size again.

Authors also mention the problems related to the complexity of the case base update. The re-
computation of the footprint cases may take up to O(N?), where NN is the number of stored cases.
Nevertheless, this does not cause severe problems, as the maintenance and update of the case base
is not performed with each run of the planner and can be performed offline.

6.5. Discussion

In the experiments, FAR-OFF was forced to reuse a previous solution, even though the system is
capable of heuristically choosing between reusing a case or generating a solution from scratch if
no suitable case is found in the case base. FAR-OFF is reported to perform well in the Blocksworld
domain — it solves more problems than the FF-based generative planner and sometimes FAR-
OFF even outperforms it in the CPU time. Other experiments were performed over the Logistics
domain, in which the FF’s heuristic works very well. Even though FAR-OFF does not outperform
the generative planner there, its planning time is usually very close. The retrieval phase during the
experiments is reported to require less time than the reuse, which makes the case-based approach
feasible. If the problems recur, the overall savings in the CPU time are highly probable.

From the theoretical point of view, FAR-OFF differs from the previous systems in several aspects.
It is the first system that heuristically prunes some parts of the case base when looking for a suitable
reuse candidate, because it rules out all the cases relevant to the footprint elements that are not
similar to the current problem. This lowers the time needed by the retrieval, but it may also lower the
quality of the reuse candidate as the best one may be missed. The retrieval phase of FAR-OFF is also
shortened by the absence of an object matching procedure, which is proven to be the real bottleneck
of the retrieval (and arguably of the whole CBP process). However, it significantly decreases the
chances of successful reuse.
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Fig. 6. Cases stored by CABALA for truckO and crate0 for problem in Figure 2.

If the retrieval is successful and a reuse candidate is found, the stored solution is reused fully.
The previous systems tend to reuse only those parts of the stored solution that match the current
situation. In a sense, the reuse implemented in FAR-OFF can be viewed as conservative, but without
the inherit hardness related to the identification of the maximal reusable portion of the retrieved
plan, which is always reused whole. The stored plan is used and connected to the current initial
state and goals by newly generated plans. Such approach on one hand simplifies the reuse process,
because there is no need to consider all the possible modifications of the plan, on the other hand it
decreases the quality of the solution as the resulting plans tend to be longer than the optimal ones.

Another novelty of the approach is the implementation of the retention step. The authors provide
an algorithm to maintain the case base, which is based on the competence and hence suitable to be
used over the whole lifetime of the case base without decreasing its performance.

7. CABALA

CABALA [de la Rosa et al. 2013] was designed to be a recommendation system for heuristic plan-
ners, like FF. It incorporates a full CBP cycle, from retrieval to retaining new cases. It has been
tested in off-line as well as in on-line settings. One of the main differences with the rest of ap-
proaches is that the case representation is based on a plan trace, but from the point of view of a
specific object. Therefore, CABALA generates several cases from each plan; one for each object in
the plan. Another difference with some of the previous approaches is that CABALA reuses plans as
search guidance.

7.1. Case representation

Cases are represented using a structure called typed sequence. We will use the plan in Figure 4 as the
running example, that is the solution found by a planner to the problem depicted in Figure 2. Given
the plan in Figure 4, CABALA creates one case for each object involved in the plan. As an example,
the typed sequences for truck0, Qi ko, and crate0, Q. ate0, are shown on Figure 6. Each case
represents the plan from the perspective of a specific object. A case is a list of pairs, one for each
action in the plan. So, it is composed of the state after applying the action, and the corresponding
action. Since CABALA is only interested on what happens to the particular object at each step in the
plan, CABALA summarizes the state and the action with the subset of information relevant to the
object. Thus, the relevant state (also called typed sub-state) is a set of literals where the object is an
argument (CABALA only stores the position of the object in the literal), and the action is labeled with
the position of the object in the action arguments. For instance, the third pair in the truckO case,
({aty, iny}, loads), represents the fact that truckO is the first argument of an at literal (represents
the location of the truck), and is the second argument of an in literal (an object has been loaded in
the truck). The action loads represents that truckO is the third argument of the 1oad action (the
plan loaded an object in that truck in a given location).

All cases related to trucks would be stored in the t ruck case base, while all cases related to
crates would be stored on the crate case base. In order to use less memory, CABALA does not
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store cases for objects that were not involved in the plan (no action in the plan uses them). For
instance, in the running example, truckl does not appear in the plan, so CABALA does not store a
case for it.

7.2. Retrieval

As each planning state contains information on several objects, CABALA retrieves one case for each
object in the new problem P. So, for each object o in P, it computes the similarity of P with all
stored cases P’ according to o. The features used by the similarity function s(P, P’,0) are: the
object type of o (to retrieve all cases of that type); the typed sub-state generated from the initial
state I of the new problem, ¢y ,, as well as the initial state I” of the previous case, ;- ,; the typed
sub-state generated from the set of goals G of the new problem, ¢ , as well as the goals G’ of the
previous case, ¢ o; and some extra information related to the relaxed plan footprint computed for
the initial state.

As an example, suppose CABALA solves the problem in Figure 2 and stores all cases (one per ob-
ject that appears in the plan) in the case base. Now, it is given a new problem to be solved as specified
in Figure 3b. For each object in the new problem, depot0, distributor0, truckO, ..., hoistl,
it would retrieve the cases corresponding to their respective types (depot, distributor,
truck, ..., hoist)and match initial and goal typed sub-states. For instance, given truckO,
there is only one case stored for trucks from the problem in Figure 2. In that case, the retrieval
would return that case. However, there are two cases for each of the three crates in the new problem
(crate0, cratel and crate?2): one for the previous crateO and another one for cratel. Thus,
it would compute the similarity of initial states and goals of the two stored cases against the initial
state and goals of the new problem (from the perspective of each new crate). It is clear from Figure
7 that the match between crate0 of the new problem with crate0’ of the case is perfect, while the
match between crate0 and crate2’ of the new problem is worse.

Initial typed sub-state of ~ crate0’: aty, onq, ong crate2’: aty,on, cleary
crateO: aty,ony, ong crateO: aty,ony, onsg
Goals typed sub-state of crate0’: ony, ons crate2’: ong
crate0: ony,ons crate0: ony,ons

Fig. 7. Comparison of the initial states and goals for crate0 of the case with crate0’ and crate2’ of the new problem.

Then, the most similar case for each object is selected, resulting in the retrieval of a set of cases,
one per object in the new problem. In the example problem, there are 11 objects, so 11 cases would
be retrieved. For depot0 and distributor0, there is only one case for each. CABALA only saved
one case for truck0 and truckl, given that truckl did not intervene in the previous plan. So, each
new truck would be associated to the same case. As for the new pallets, each would be assigned the
most similar case for each. Thus, palletO would be better matched with the case of palletO in
the case base than the one corresponding to pallet1. And the same would happen to pallet1. For
hoists, there would be two cases in the library (one for each previous hoist). The initial and goal
states would be equal. The cases would differ though, since hoistO was used in the beginning of
the plan and hoist1 was used at the end. If it would only match the initial states and goals, there
would be no difference. Thus, CABALA also matches the footprint of both hoists. The footprint
is computed from the relaxed plan, focusing on each specific object. Details can be found in the
paper [de la Rosa et al. 2013]. This serves to differentiate the best case for each hoist. And, it would
retrieve the previous hoistO case for the new hoistO and the previous hoist1 case for the new
hoist1. And the same reasoning would be done for the crates.

7.3. Reuse

Similarly to PRODIGY/ANALOGY, the retrieved cases are kept in a replay table which keeps track,
for each retrieved typed sequence, of the pointer to the last element (action in the type sequence)
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used in the current search. The advise given by typed sequences is usually independent of the
search algorithm. Accordingly, CABALA uses the concept of a “recommended node”, to recog-
nize a promising successor suggested by the CBP component. Once a node is recommended, the
search technique can use two basic strategies to consider the advise, generating several versions of
CABALA, depending on the search technique and the recommendation strategy used:

— Pruning strategy. A recommended node (if exists) can be directly selected, discarding the rest of
successors. This is similar to a state-action policy.

— Ordering strategy. A recommended node can be preferred for evaluation in a greedy algorithm that
distinguishes between node generation and node evaluation.

7.4. Retention

Once a new problem is solved, CABALA generates the corresponding cases and stores them in the
case base. It also keeps track of measures as percentage of each case correctly used by the search
algorithm to assess the utility of each case. This information is used for providing more informative
recommendations; they are not simply recommend a given node (action) or not, but recommend it
with a given strength.

7.5. Discussion

Results on eight planning benchmarks’ showed the benefits of using typed sequences during the
search process. Improvements obtained by different CBP algorithms were due to the reduction in
the number of evaluated nodes. Since computing the relaxed plan heuristic for all nodes in the search
tree is expensive in terms of time, any technique that can alleviate this burden will scale better in
large problem instances. Accordingly, typed sequences can be complemented with other techniques
that handle node evaluation issues.

In comparison with previous approaches (as the ones surveyed in this paper), CABALA case struc-
ture is based on objects types. Therefore, object matching is fast, focused on the type sequences
stored for the types of objects that appear in the new problem. However, this case base structure
loses information on the specific relations among objects. Thus, the reuse is a soft bias instead of
a strong recommendation. CABALA reuses several cases as PRODIGY/ANALOGY does (one of the
main differences with other approaches such as SPA or PRIAR). CABALA uses a heuristic forward
planner, as FAR-OFF does, in contrast to previous systems that used non-heuristic backwards search
planners, such as SPA, PRTAR or PRODIGY/ANALOGY.

8. OAKPLAN

OAKPLAN [Serina 2010] is a case-based planner that uses heuristic approaches to address the re-
trieval process — it achieves an efficient retrieval by using graph-theoretical techniques and kernel
functions [Scholkopf and Smola 2001]. The adaptation is implemented in an incremental generative
manner using the LPG-adapt procedure [Fox et al. 2006], which performs a local search in the space
of plans.

8.1. Case representation

Each case in OAKPLAN consists of a description of a planning problem, that is, the initial state and
goals, the graph representation of the problem called Planning Encoding Graph used to compute the
kernel functions, the degree sequences of this graph [Ruskey et al. 1994] used to avoid considering
dissimilar cases, and the solution plan represented as a sequence of actions.

The underlying idea of the Planning Encoding Graph is to provide a description of the “topology”
of a planning problem without making assumptions regarding the importance of specific problem
features for the encoding. The Planning Encoding Graph of a planning problem II is the union of
the directed labelled graphs encoding the goals and the propositional initial facts. The Initial Fact

"The number of tested domains greatly increased with respect to other previous approaches.
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Encoding Graph of a propositional initial fact p = (p ¢1...¢,), p € F,p € P,c1,...,¢p € O
is a directed graph where the first node is a propositional node I,,, which is connected with ¢; by
an edge with label {ISJ}. The object node c; is labelled with the type of the object ¢; and it is
connected with all the remaining nodes c; by an edge with label {I;';j }. For example, the initial
fact (on cratel crate0) of our running example of Figure 3a determines an Initial Fact Encoding
Graph that connects the I,,, propositional node to the crate1 node (the label of this edge is {1%:1})
and it is connected with the node crate0 by an edge with label {I1;>}. The object nodes crate0
and cratel are labelled by the corresponding object type (crate).

Similarly, it is possible to define the Goal Fact Encoding Graph of a propositional goal p using the
token G, instead of token I,,. Furthermore, in [Gerevini et al. 2012] the authors propose an extension
of the Planning Encoding Graph in order to work with numeric domains involving resources and
numeric preconditions and goals.

8.2. Retrieval

The retrieval is split into three steps. The first step is a filtering algorithm, which prunes as many
cases as possible, leaving only a small group of candidates for the reuse. The primary screening
uses degree sequences [Ruskey et al. 1994] of the Planning Encoding Graphs in order to avoid
to consider unpromising planning problems. It only compares the precomputed degree sequences
of the case base elements with the degree sequences of the current problem and hence it can be
performed in O(m log m), where m is the number of nodes of the considered graphs.

OAKPLAN computes the upper bounds on the similarity among the Planning Encoding Graphs
of the case base elements and the Planning Encoding Graph of the current problem. The cases that
are promisingly similar are passed to the next step, where their objects are matched to those of the
current problem. As was mentioned before, object matching is an NP-hard problem and therefore
OAKPLAN proceeds heuristically, using kernel functions to approximate the optimal resolution of
the matching problem. Specifically, the task of the kernel functions is to define a mapping function
from the case’s objects to the objects of the current problem, so that their Planning Encoding Graphs
are as similar as possible after the objects are matched. The main advantage of using kernel functions
at this stage is their efficiency — their computation requires only polynomial time, namely O(m?)
[Serina 2010], where m is the number of nodes of the smaller Planning Encoding Graph.

The retrieval phase is then able to identify a set of cases with Planning Encoding Graphs that
better fit the Planning Encoding Graph of the current planning problem and use the corresponding
matching functions to “translate” the solution plans of the corresponding case base elements in can-
didate solutions of the current planning problem. These solution plans are then carefully evaluated
in order to determine their capability to solve the current planning problem.

This evaluation simulates the execution of the stored plans in order to identify the unsupported
goals and the unsupported preconditions of the actions in the plans. The different importance of the
inconsistencies related to unsupported facts is estimated by computing relaxed plans starting from
the states obtained simulating the execution of the actions in the candidate solution plan preceding
the different inconsistencies. The number of actions in each relaxed plan corresponds to the com-
plexity of making the selected facts supported; similarly the sum of the number of actions in the
different relaxed plans is used in order to determine the competence of the stored plan 7 to solve the
current planning problem. The estimated adaptation cost of the best stored plan is compared with
the estimated cost of generating the new plan from scratch in identical manner. The reuse is applied
only if it is estimated to be worth.

Consider the solution plan of Figure 4, obtained by a matching process that associates all the
objects of the case depicted on Figure 3a to the objects with the same name of the current plan-
ning problem (Figure 3b). The first action the system tries to apply during the evaluation phase is
(1ift hoistO cratel crate0 depot0) which has (clear cratel) as unsatisfied precondition.
Starting form the initial state of casel, the system builds a relaxed plan in order to satisfy this pre-
condition without invalidating the other preconditions that are supported. The actions selected for
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in this relaxed plan are (1ift hoistO crate2 cratel depotO) that makes (clear cratel) sup-
ported and (1oad hoistO crate2 truck0 depot0) that makes (available hoist0) supported.
Similarly, for the unsupported goal (on crate2 cratel), the system builds a relaxed plan with
actions (unload hoistl crate2 truckO distributor0) and (drop hoistl crate2 cratel
distributor0). Hence the estimated adaptation costs sum up to four.

8.3. Reuse

OAKPLAN uses LPG-adapt [Fox et al. 2006] to modify the retrieved plan so that it solves the current
problem. LPG-adapt addresses planning as a local search in the space of plans. It starts its search
from the plan that was retrieved and incrementally modifies it until it reaches a flawless plan. The
search process may continue even after a solution is found and produce a sequence of valid plans.
Each plan has a better quality than the previous ones or it has a better stability with respect to the
retrieved plan. LPG-adapt also features a mechanism for leaving local optima by simply introducing
few random inconsistencies into a valid plan that was found, but that did not improve over the best
solution so far. Nevertheless, the reuse step of OAKPLAN can be performed by any other adaptation
planner.

8.4. Retention

Similarly to other systems like PRODIGY/ANALOGY or CABALA, there is an extra work that needs
to be done in order to create a new case and introduce it into the case base. First, only initial state
relevant facts, that is, only facts needed for the execution of the solution plan, are identified. Those
would be equivalent to the footprint computed by PRODIGY/ANALOGY or CABALA. Then, the Plan-
ning Encoding Graph is constructed, using the initial state relevant facts instead of the original initial
state. The Planning Encoding Graph together with its degree sequences and the solution plan then
constitute the new case, which is inserted into the case base. As a last step, the additional data
structures supporting the retrieval phase are updated.

The problem of case base maintenance was studied in [Gerevini et al. 2013a; 2013b] and a second
problem related to retention is formulated. Apart from deciding which case to add (and how to
implement such addition, as was discussed in the previous systems), OAKPLAN also addresses
the problem of the excessive growth of the case-base by proposing policies to reduce a case base.
The system implements several kinds of offline maintenance policies of different computational
complexity, yielding case-base reductions of various qualities. The maintenance step is invoked by
the user, who also specifies which strategy is used for the reduction. The strategies range from a
completely uninformed, but very fast random policy to a fully informed weighted coverage-guided
policy, which is however NP-complete and needs to be approximated.

8.5. Discussion

The OAKPLAN system aims at improving the retrieval phase, which is the bottleneck of the case-
based planning approach. Similarly to PRODIGY/ANALOGY and FAR-OFF, it first filters out the
cases that have a low similarity. However, the screening procedure of OAKPLAN considers briefly
all elements of the case base, while FAR-OFF considers only a subset of the case base (the footprint
elements) but spends more time evaluating those. After the filtering, the retrieval is based on the
estimated cost of repairs needed in order to apply the stored plan to the current problem, which
resembles the approach of PRIAR.

The adaptation phase does not bring any significant (theoretical) improvements. It uses an incre-
mental generative planner to generate a new solution plan based on the stored solution. OAKPLAN
uses LPG-adapt for this purpose, but it can be easily replaced by any other reuse planner as the rest
of the system is independent on the choice. Note that, for instance, FAR-OFF uses information rele-
vant to the generative planner used in the adaptation phase also in its retrieval phase. This is not the
situation of OAKPLAN, where the strategy for modifying the retrieved solution does not influence
any other part of the case-based process.
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Many of the previous systems (e.g. PRIAR, SPA) ensured completeness of the planner by the
ability of the adaptation procedure to change any of the decisions made in the stored plan and conse-
quently to produce a new solution plan that has nothing in common with the stored one. OAKPLAN
can also produce a completely different solution, but in two different ways: if a sufficiently similar
problem is found in the case base, but for some reason the solution is not applicable, LPG-adapt
finds one completely unrelated. If the retrieval step fails and does not provide any reuse candidate,
OAKPLAN runs LPG-adapt from an empty plan, which equals to generation from scratch. More-
over, LPG-adapt is very robust; the local search it performs can very quickly change significant
parts of the plan if needed, providing solution plans even if the retrieved case is quite dissimilar to
the solution plan to be found.

9. SIN

SIN (SHOP integrated with NaCoDAE) [Muifioz-Avila et al. 2001] is a case-based planning algo-
rithm that was implemented in the HICUP planning system [Muifloz Avila et al. 1999]. HICUP
worked on military planning operations in a Noncombat Evacuation Operations Domain, and the
specific use introduced several requirements on the underlying planning algorithm. Due to the mili-
tary use, the plans are hierarchical, the domain theory is incomplete, as the military doctrine cannot
cover all possible courses of action, and the planner has only limited information about the current
state. To address these requirements, SIN combines a generative, hierarchical planner SHOP [Nau
et al. 1999] with a retrieval system based on interaction, NACODAE [Breslow and Aha 1998]. It
uses cases to cover for the missing domain knowledge and state information.

The retrieval and reuse in SIN interleave much more than in other CBP systems. While the other
planners surveyed here perform first the retrieval step and then try to reuse the retrieved cases, SIN
chooses whether to decompose the task at hand by means of the stored cases (retrieve) or whether it
uses the generative engine, mimicking the reuse step when no suitable case has been retrieved. The
decision whether to generate a new task decomposition or to retrieve one from the case base depends
on which of the supporting systems is capable of doing so, and which system is currently active.
Note that if SIN retrieves a case to decompose a task, the consecutive reuse step is not needed, as
the decomposition is a valid one. Similarly, if there is no case matching the task to be decomposed,
the “reuse” step will try to generate a brand new decomposition. Hence, one could understand the
two phases as mutually exclusive.

9.1. Case Representation

SIN is able to combine the generative knowledge coming from an HTN-based (Hierarchical Task
Network [Erol et al. 1994]) planner with the experiences stored in the cases. The cases are designed
to aid such interaction. In HTN, the domain knowledge consists of methods, which specify how
and when a task can be decomposed to subtasks, and operators, which allow transforming a state
to another state. In SIN, a case is an instance of a method enriched by a set of preferences related
to matching of a case to the current state. The preferences are ordered pairs of question and answer
that, when it lacks complete information about the state, allow it collecting extra information from
a user and consequently can rank the cases according to their match to the current state.

9.2. Retrieval

SIN uses NACODAE [Breslow and Aha 1998] to retrieve cases from the case base. Differently to
retrieval algorithms of other case-based systems, NACODAE does not require a complete world
information. On the contrary, one of its tasks is to elicit the exact world state by gathering the infor-
mation about the state from the user as well as assessing the user’s preferences. This is achieved by
conversations with the user, providing NACODAE with a rank of the conversational case retriever.

When NACODAE is presented with a compound task that needs to be decomposed, it queries the
case base and selects all the cases that are not contradictory to the current (partial) state and task to
be decomposed. Then, the system tries to specify the current world state as closely as possibly by in-
teracting with a user. Such interaction takes the form of a sequence of questions and answers, which
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help determine how applicable are different cases in the current situation. Based on the answers of
the user, the retrieved cases are re-ranked and at the end of the conversation, the most suitable case
is retrieved. Such a case is then used to decompose the task and SIN continues to decompose the
rest of the compound tasks in the plan.

NACODAE stops either when all the compound tasks have been decomposed, or when there is
no suitable case to be reused (or when the user refuses the proposed cases). In the latter, SIN hands
the control over to SHOP to generate a new task decomposition.

9.3. Reuse

Given the current (partial) state, an incomplete domain theory and a set of cases, SIN tries to refine
a set of tasks into a plan. To do so, it may use the cases retrieved by NACODAE as well as find a
new decomposition by SHOP.

A case in SIN is an instance of a method, therefore an application of a case can be viewed as a
single step in a derivational trace. When no suitable case is available for decomposing the task at
hand, a new decomposition may be found by SHOP [Nau et al. 1999]. SHOP models the world
using complete knowledge about its states and performs a total-order forward-search on the states
in combination with HTN-style problem reduction. The resulting search strategy is quite similar to
Prolog’s and turned out to be very successful in the real world applications such as manufacturing
planning.

SHOP terminates after it had successfully decomposed all the compound tasks (and hence pro-
duced a solution), or when it needs to backtrack on a compound task that has no more applicable
methods to be decomposed (a failure). In the former, SIN terminates as well, offering the same so-
lution as SHOP had found. In the latter (SHOP failed), the control is handed over to NACODAE,
which tries to decompose the remaining tasks by replaying cases from the case base.

9.4. Retention

SIN does not implement any retention algorithm. This is due to the high importance of human ex-
pert’s opinion and approval given by the army domain for which SIN was developed. By design,
S1IN is initialized with an incomplete domain theory and a case base. The domain theory is derived
from the military doctrine and standard operating procedures and provides the system with a knowl-
edge how to partially decompose high-level tasks. However, the full decomposition to primitive
tasks often requires the use of previous experiences, which are stored in the case base. The case
base is therefore crucial for finding a solution and guaranteeing its qualities and the contents of the
case base can be changed only by the responsible human experts.

9.5. Discussion

Similarly to PRIAR, the planning algorithm is based on hierarchical task decomposition and hence
requires a richer domain model than previous planners. However, SHOP considers the tasks in the
order they will be executed in the plan, which avoids some issues related to tasks interactions and
goals interactions and results in a much simpler algorithm than NONLIN, used in PRIAR.

Differently from the previous systems, SIN can also handle problems with incomplete domain in-
formation, as the missing information is retrieved from the experience stored in the case base or dur-
ing the conversations with the user. By doing so, SIN opens an interesting direction for case-based
systems by showing the potential they have in domains and situations where not all information is
guaranteed to be known during the implementation of the planner.

10. ML-CBP

The development of Model-Lite Case-Based Planner (ML-CBP [Zhuo et al. 2012]) has a slightly
different motivation than most of the planners presented here. The authors are concerned with find-
ing a plan in situations where the domain theory is incomplete. Hence, a planning task for ML-CBP

is described by an initial state 7, a goal specification G and a set of incomplete action models A. An

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:28 D. Borrajo, Roubickova & Serina

incomplete action model contains actions where some predicates from the pre(a), add(a) or del(a)
are missing. The library of plans contains plans that are valid for such a domain, and hence extends
the domain knowledge of the planner. The search for the solution combines the use of the incomplete
domain knowledge to create a skeletal plan, whose correctness is then increased by using fragments
of the stored plans.

10.1. Case Representation
The reuse information in ML-CBP is a plan example; that is, the actions present in the plan comply

with the action model A, but no propositions are missing in their description. Every plan example
is composed of an initial state, a sequence of actions and a goal state obtained by application of
the actions sequence from the initial state. When ML-CBP receives a new problem to be solved, it
decomposes the plan examples into fragments relevant for solving the new problem, the set of such
fragments then plays the role of the case base.

10.2. Retrieval

When a new problem is presented to the system, a suitable mapping is found and applied to all
the stored plan examples. The mapping can cause some actions of the plan examples not to be
valid/applicable any more. Such actions are removed from the plan example and the resulting se-
quence of actions is called plan fragment.

The quality of the mapping is determined by the number of propositions of the initial state and
goal specification shared by the current problem and the plan example after the mapping was applied
to it. The search for a suitable mapping is guided by the features/properties of the objects involved
— e.g., only mappings between crates that are “on” in the Depots domain are considered. Such a
constraint is claimed to reduce the amount of mappings that need to be considered so that a suitable
mapping can be found at reasonable computation costs.

Even with the best available matching, the probability of finding a plan fragment corresponding
to the current problem is quite low. Therefore, a utility of each plan fragment is estimated and the
best one is selected. The utility of the plan fragment is based on the frequency of its occurrence in
different plan fragments. Hence, the problem of retrieval can be translated into a frequent sequential
pattern-mining task and solved as such. The frequent sequential pattern-mining task consists of
finding the complete set of sequential patterns whose support is larger than the threshold, where the
support of a pattern is given by the number of sequences in the database that contain the pattern. The
input to the problem is a sequence database which is effectively the case base here, and a threshold
specifying the support, which may depend on the domain or other settings. To address the mining
problem, the authors use the SPADE algorithm [Zaki 2001] and from the resulting patterns they
choose only the ones of maximal length. The set of such fragments is then passed to the adaptation
phase.

10.3. Reuse

The input of the adaptation phase is a skeletal plan based on (Z,G, A), represented as a set of
causal pairs; a set of plan fragments based on plan examples and causal pairs; and a set of frequent
fragments with a specific threshold obtained by retrieval. A causal pair is a pair of actions such that
the first one provides one or more conditions for the second.

The frequent fragments are integrated together as indicated by the skeletal plan to form the final
solution as follows: a fragment that contains one or both actions of a causal pair is appended at the
beginning or the end of the solution plan and all the causal pairs that got satisfied are removed from
the skeletal plan. The causal pair is satisfied if the (partial) solution contains both actions of the pair.
This is repeated until there are no causal pairs left (the skeletal plan is fully resolved by the frequent
fragments) or there is no fragment to be used and the solution cannot be found. Note that ML-CBP
is the only system presented here which uses a custom made algorithm in the reuse step instead of
employing another adaptive planner.
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Table I. Extended version of Spalazzi’s table — case and case base.

system | plan representation | memory organisation | stored solution

PRIAR transformational flat validation structure

SPA transformational flat plan, causal links and constraints
among the actions

MRL transformational indexed LLP-formula

PRODIGY/ANALOGY derivational indexed derivation trace

FAR-OFF transformational indexed transaction logic rule

CABALA derivational semi-indexed by types | typed sequences

OAKPLAN transformational indexed plan and supporting structures

SIN hybrid flat task decomposition

ML-CBP transformational flat plan example

10.4. Retention

The system has a set of plan examples at its disposal that are maintained fixed over the lifetime
of the planner. However, this set of examples is turned into a set of plan fragments specific for the
problem the system is trying to solve, where the set of plan fragments functions as a case base.
The plan fragments are obtained from the plan examples by mapping the objects using the mapping
defined by the retrieval and filtering out the actions that no longer comply with the domain theory
due to the mapping.

10.5. Discussion

Zhuo et al. [2012] experimentally observed that the system solves a comparable number of problems
as OAKPLAN if aided with a complete domain knowledge. The average plan length tends to be
worse than those generated by generative planners, such as FF, which is understandable considering
the way the plans are constructed. On the other hand, in some domains the solutions found by ML-
CBP are reported to have better quality than those found by FF, which is probably due to the high
quality of the provided plan fragments.

The mapping is similar to the one used by OAKPLAN, but, differently from OAKPLAN, it con-
siders all the propositions, not only the relevant ones. Furthermore, the mapping is heuristic guided
by the number of matching predicates the objects appear in in the two instances, but the choice of
such heuristic is not clarified. Note that at the date of this survey, ML-CBP (as well as OAKPLAN)
is still being developed and the implementation can be improved in later work.

11. CONCLUSION

In this work, we have surveyed several case-based planners to demonstrate the evolution of the field
as well as the variety of approaches that can lead to a successful implementation. The described
systems range from very simple to more elaborate ones that, under some conditions, can compete
with generative planners. We close the paper with an overall comparison of the surveyed planners,
as well as a survey of very related work on CBP that covers either domain-dependent CBP or CBP
in execution environments.

11.1. Evolution of CBP

It is nearly impossible to compare the performance of the surveyed techniques, as the systems were
developed over quite a long period of time having different computational resources and different
goals in mind. Also, the understanding and competence in the whole area of automated planning
evolved since the introduction of the first of these systems until today. Therefore, we propose here
just a snapshot of different features of the case-based planners that may be of interest. Tables I
and II feature the categorisation of presented approaches according to the taxonomy proposed by
Spalazzi [2001], extended to the planners not listed there (below the line). Note that the planners
are sorted in the same order as they were described here, not chronologically.
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Table Il. Extended version of Spalazzi’s table — case-based cycle.

system | retrieval ] reuse | retention
PRIAR associative heuristic-based, generative accumulation
SPA associative heuristic-based, generative accumulation
MRL hierarchical heuristic-based classification
PRODIGY/ANALOGY hierarchical generative, merging, derivational replay accumulation
FAR-OFF hierarchical heuristic-based, generative, merging accumulation
CABALA associative derivational replay, search recommendations | accumulation
OAKPLAN hierarchical heuristic-based, generative, merging selective
SIN conversational generative, derivational replay manual
ML-CBP associative heuristic-based, replay manual

We started the survey by describing PRIAR, one of the first domain independent systems imple-
menting the case-based approach. The domain independence is a bit disputable for PRIAR, as the
validation structure used by the planner embeds some domain knowledge in a way similar to Hier-
archical Task Networks. However, the algorithm as such works in any domain and hence we place
PRIAR among domain-independent systems.

A similar approach (to transform the stored solution) was taken later by SPA, but the form of
the stored solution is different (a plan with causal links and ordering constraints in place of the
validation structure) and the system does not store any domain-dependent knowledge in any of its
internal structures.

We surveyed MRL to highlight the variety of different formalisations in CBP. In MRL, planning
problems are represented as formulae in temporal logic LLP and it uses a deductive planning system
PHI to construct a proof that the goals can be reached from the initial state. Such a proof is then the
solution plan.

PRODIGY/ANALOGY reuses the reasoning steps that previously led to finding a solution rather
than the actual plans, representing the derivational replay as a technique complementary to
the transformational approach implemented by the previously described systems. In addition,
PRODIGY/ANALOGY was the first system able to retrieve several cases at once and to combine
them during reuse.

With the success of heuristic approaches for generative planning, the CBP systems performing
transformational plan reuse started to reappear. Similarly to PRODIGY/ANALOGY and CABALA,
also FAR-OFF can retrieve several cases to reuse, but it does so only if the most suitable candidate
failed to be modified to solve the current problem. FAR-OFF tries to find a plan to connect the initial
state of the current problem with the case’s initial state and concatenates the plan stored in the case.
Then it only needs to find a plan from the final state of the case to a state that satisfies the goals of
the current problem. FAR-OFF saves significant effort on identifying the reusable parts of the stored
solution to improve the performance, even though it lowers the quality of the new solution plans.

CABALA is a recent system that stores cases to guide the search for a new solution plan.
Hence it falls among derivational planners together with PRODIGY/ANALOGY. Differently from
PRODIGY/ANALOGY, CABALA stores plan traces for every object of the planning problems. Con-
sequently, it retrieves several cases to address the current problem.

OAKPLAN is a contemporary transformational system, which addresses the retrieval problem by
graph-based heuristics and the plan reuse by a local search in the space of plans started from the
retrieved plan.

Starting from FAR-OFF, the reuse phase is based on forward search heuristic planners, simi-
lar to FF. All surveyed systems before the end of the nineties used backward search planners
(PRODIGY/ANALOGY, SPA) or hierarchical planners (PRIAR). Thus, the plan adaptation steps were
not guided by heuristics, and planning time was huge even in simple problems. Using forward search
heuristic planners dramatically changed the size of planning problems that could be solved, and thus
planners coverage. So, CBP approaches such as FAR-OFF, CABALA, or OAKPLAN benefit from this
boost in planners coverage.
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Table IlI. Other features - retrieval and matching.

system \ mapping \ similarity evaluation

PRIAR partial unification of Z, G number and type of inconsistencies
in the validation structure

SPA partial unification of Z, G number of open preconditions

MRL relations between initial and goal states number of matching goals

PRODIGY/ANALOGY unification number of matching goals and their

interactions
FAR-OFF none ADG similarity metric
CABALA based on types of objects matching degree among the initial

state and goals sub-states;
relaxed plans

OAKPLAN kernel functions matching degree among the initial
state, goals; relaxed plans

SIN similarity of the state and case’s preconditions | case’s preference pairs

ML-CBP partial unification of Z, G frequent sequential pattern mining

Table IV. Other features - retrieval and reuse.

system \ filtering | reuse engine
PRIAR estimated adaptation effort NONLIN
SPA number of matching goals SNLP
MRL mapping the plan specification to the concept descrptions PHI
PRODIGY/ANALOGY subset of goals, partial match of initial state features PRODIGY
FAR-OFF footprint elements FF
CABALA one case per type Sayphi
OAKPLAN degree sequences LPG-ADAPT
SIN applicability of a case SHOP
ML-CBP utility of plan fragment none

An interesting direction in CBP is represented by the last two described systems which suggest
to use the knowledge stored in the case base not only as control knowledge (to guide the search for a
new solution), but also as domain knowledge, where the cases substitute for missing or incomplete
domain descriptions.

SIN is an approach based on Hierarchical Task Networks (similarly to PRTIAR). It is also more
interactive than the previous systems as it uses conversations with the user in order to obtain more
details about the current state. The idea of using the cases for task decomposition was further exam-
ined in [Xu and Muifioz Avila 2005].

Lastly, we surveyed ML-CBP, which is specifically designed to plan with an incomplete domain
theory. Despite the different settings, the system still addresses the phases of the case-based method-
ology; the retrieval is guided by the utility of the stored plans and allows retrieving multiple cases,
which are then combined into a solution plan.

Tables III and IV compare several implementation choices made in the studied planners — we
focus on the presence of a procedure for matching the objects and the mapping it uses, the similarity
function used by the retrieval step (Table III), the implementation of the filtering step during retrieval
and the generative engine underlying the reuse of the retrieved solution (Table IV).

11.2. Applications of CBP

As we have discussed in the introduction, we believe CBP has a huge potential in applications of
planning technology. Here, we review some examples of recent applications of CBP. Among them,
two domains have lately received some attention: workflow management and Real-Time Strategy
(RTS) games. Games present several new challenges compared to traditional planning domains: the
state space and decision space are huge; the world is only partially observable and non-deterministic
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(the player can sense only part of the world and the game may include unpredictable opponents);
and they are real-time, so the time for planning or replanning is very limited.

Simpler models of planning have been used together with CBR [Aha et al. 2005] to provide tactics
for RTS games, as in WARGUS, a clone of WARCRAFT II. In the context of the same game, several
issues related to CBP have been investigated in [Dannenhauer and Mufioz-Avila 2013; Finestrali
and Mufioz-Avila 2013; Jaidee et al. 2013]. In particular, DARMOK [Ontafién et al. 2010] is a CBP
system that focuses on real-time. So, it needs to address several issues most of the planners we
discussed in this paper did not consider explicitly; e.g., the dynamics of the world during the exe-
cution or the high complexity of the RTS domains. The authors propose an extension of the CBR
cycle to allow for delayed adaptation to postpone the reuse steps until just before their execution, so
that the state of the world is as close to reality as possible. The authors of DARMOK have also cre-
ated a middleware platform, MAKEMEPLAYME, to help on the use of Al techniques (as learning
and planning) for game playing [Gomez-Martin et al. 2010]. Their approach is game-independent,
though not clearly fully domain-independent, since it only seems to work for specific kinds of
games. Since it learns the actions, it might generate incomplete domains, leading to unsound plans.
Also, the engineering of their domain models seems to be slightly more complex than in PDDL,
since they augment the types of conditions on actions. This kind of CBP approach is well suited for
planning in dynamic environments such as games. It would be interesting to compare the knowledge
engineering effort and the validity of the resulting planning systems using a standard PDDL-based
approach and MAKEMEPLAYME.

A recent interesting concept related to planning in real-time applications (such as games) is Goal
Driven Autonomy (GDA) [Molineaux et al. 2010]. In a planning and execution scenario where
plans are not executed until the end due to unexpected events, GDA proposes to dynamically change
goals driven by execution failures and explanations of those failures. There have been some works
that apply CBP to games using a GDA approach [Mufioz-Avila et al. 2010]. A related approach
performs a meta-reasoning step on the planning and execution cycle as in META-DARMOK [Mehta
et al. 2009].

In the last decade, different approaches successfully took advantage of the close relationship
between Al planning and workflow technologies used for modeling and managing the execution of
tasks; in fact, the requirements of formal planning models apply also well to workflow. In particular,
CBR and CBP have been effectively applied to workflows generation. The CODAW system [Mad-
husudan et al. 2004] allows the user to incrementally model and compose workflows using an HTN
planner. The system stores two types of cases: prototypical cases that encode workflow schemas and
instance-level cases that correspond to instantiations of prototypical cases. PROCHIP [Macedo and
Cardoso 2004] is another example of the combination of CBR and HTN.

The CABMA system [Xu and Mufioz-Avila 2004] uses case-based HTN planning techniques in
order to assist the users with their project plans. A case is defined as a generalized version of a Work
Breakdown Structure which consists of a task, a set of subtasks decomposing it, an ordering relation
between the subtasks and a set of resources necessary for applying the case. Since there exists a
one-to-one correspondence between WBS and HTN structures [Xu and Muiioz-Avila 2004], it is
possible to use HTN planning techniques in order to fix the inconsistences relative to the reused
cases.

Other explored domains are manufacturing and e-learning. CAPLAN/CBC [Muifioz-Avila and
Weberskirch 1996] uses derivational replay with a SNLP-like [McAllester and Rosenblitt 1991]
generative planner to solve the task of manufacturing workpieces. It was designed to behave opti-
mally in this specific domain. In [Garrido et al. 2012], the authors describe an approach to convert e-
learning contents and student preferences and goals into planning domains and problems expressed
in PDDL. Even though these problems can be solved by any planner, the authors encourage using
CBP techniques as in the e-learning domain it is desired to produce plans closely resembling those
already used, because the previously approved solutions comply with additional set of requirements
coming from e.g. pedagogy or other restrictions on the course organisation.
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11.3. Future Work

It seems that the efficiency of the CBP systems depends on the implemented heuristics in retrieval
and reuse rather than on the theoretically fundamental choice of derivational or transformational
plan reuse, provided that the later one is not implemented in a conservative manner. The importance
of good heuristics for plan reuse is also supported by theoretical evidence, which defines one of
the future directions CBP community should try to investigate. Other interesting open problems
related to the implementation include integration with current generative planners, integration with
portfolios, reuse systems designed for the run on multi-core machines and, in general, development
of better planning by reuse systems. Another interesting direction for CBP consists on focusing the
research to settings in which experience plays an essential role and therefore calls for some form of
experience reuse. An example of such settings can be problems with incomplete domain knowledge
or problems where an approval of human experts is crucial. In the last section, we have encountered
a number of domains fulfilling these criteria, where the use of CBP lead to satisfactory performance.

To conclude this paper we would like to claim that the field of CBP still evolves and, even though
it is not a mainstream approach, there are open questions and research challenges worth addressing.
We believe that the continuous research in this area may result in a good alternative to generative
planners and in some domains may even lead to better results than use of first principle solvers.
Additional attention should be paid to theoretical issues as well as to application of generative
planning techniques and heuristics to CBP, as many of the described systems show that such an
influence can be beneficial.
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