Monte Carlo Tree Search

Simon M. Lucas

Outline

MCTS: The Excitement!
A tutorial: how it works
Important heuristics: RAVE / AMAF

Applications to video games and real-time
control

The Excitement...

 Game playing before MCTS
* MCTS and GO
* MCTS and General Game Playing

Conventional Game Tree Search

* Minimax with alpha-beta
pruning, transposition tables

e Works well when:

— A good heuristic value function
is known

— The branching factor is modest

* E.g. Chess, Deep Blue, Rybka
etc.

Go

* Much tougher for
computers

* High branching factor

* No good heuristic value
function

“Although progress has been
steady, it will take many decades
of research and development
before world-championship—
calibre go programs exist”.
Jonathan Schaeffer, 2001

Monte Carlo Tree Search (MCTS)

Revolutionised the world of computer go
Best GGP players (2008, 2009) use MCTS

More CPU cycles leads to smarter play

— Typically lin / log: each doubling of CPU time adds
a constant to playing strength

Uses statistics of deep look-ahead from
randomised roll-outs

Anytime algorithm

Fuego versus GnuGo
(from Fuego paper, IEEE T-CIAIG vol2 # 4)

©
L]
c
]
]
h=
=
o
L

General Game Playing (GGP) and
Artificial General Intelligence (AGl)
Original goal of Al was to develop general
purpose machine intelligence

Being good at a specific game is not a good
test of this —it’s narrow Al

But being able to play any game seems like a
good test of AGI

Hence general game playing (GGP)

GGP: How it works

Games specified in predicate logic

Two phases:

— GGP agents are given time to teach themselves
how to play the game

— Then play commences on a time-limited basis
Wonderful stuff!

Great challenge for machine learning,
— But interesting to see which methods work best...

Current best players all use MCTS

MCTS Tutorial

How it works: MCTS general concepts
Algorithm

UCT formula

Alternatives to UCT

RAVE / AMAF Heuristics

MCTS

* Builds and searches an asymmetric game tree
to make each move

* Phases are:
— Tree search: select node to expand using tree
policy
— Perform random roll-out to end of game when
true value is known

— Back the value up the tree

Sample MCTS Tree

(fig from CadiaPlayer,
Bjornsson and Finsson, IEEE T-CIAIG)

MCTS Algorithm for Action Selection

repeat N times { // N might be between 100 and 1,000,000
// set up data structure to record line of play
visited = new List<Node> ()

// select node to expand
node = root
visited.add (node)

while (node 1s not a leaf) {
node = select (node, node.children) // e.g. UCT selection

visited.add (node)

}
// add a new child to the tree

newChild = expand (node)
visited.add (newChild)
value = rollOut (newChild)

for (node : visited)
// update the statistics of tree nodes traversed

node.updateStats (value) ;

}

return action that leads from root node to most wvalued child

MCTS Operation

(fig from CadiaPlayer,
Bjornsson and Finsson, IEEE T-CIAIG)

Each iteration starts at |
the root et

action

Follows tree policy to | selection |
reach a leaf node ’

Then perform a
random roll-out from
there

Node ‘N’ is then added
to tree | action |

Value of “T" back- | selection
propagated up tree

Upper Confidence Bounds on Trees
(UCT) Node Selection Policy

* From Kocsis and Szepesvari (2006)

* Converges to optimal policy given infinite number
of roll-outs

e Often not used in practice!

L
/log N

Select ipepe = arg — 1ax [i + 4/
1=children nodes \"

T

Tree Construction Example

e See Olivier Teytaud’s slides from
AlGamesNetwork.org summer 2010 MCTS
workshop

AMAF / RAVE Heuristic

e Strictly speaking: each iteration should only
update the value of a single child of the root
node

 The child of the root node is the first move to
be played

 AMAF (All Moves as First Move) is a type of
RAVE heuristic (Rapid Action Value Estimate) —
the terms are often synonymous

How AMAF works

* Player A is player to move

* During an iteration (tree search + rollout)

— update the values in the AMAF table of all moves
made by player A

e Add an AMAF term to the node selection

policy
— Can also apply this to moves of opponent player?

Should AMAF work?

Yes: a move might be good irrespective of when it
is player (e.g. playing in the corner in Othello is
ALWAYS a good move)

No: the value of a move can depend very much
on when it is player

— E.g. playing next to a corner in Othelo is usually bad,
but might sometimes be very good

Fact: works very well in some games (Go, Hex)

Challenge: how to adapt similar principles for
other games (Pac-Man)?

Improving MCTS

Default roll-out policy is to make uniform random
moves

Can potentially improve on this by biasing move
selections:

— Toward moves that players are more likely to make

Can either program the heuristic — a knowledge-
based approach

Or learn it (Temporal Difference Learning)
— Some promising work already done on this

MCTS for Video Games and
Real-Time Control

* Requirements:
— Need a fast and accurate forward model

— i.e. taking action a in state s leads to state s’ (or a
known probability distribution over a set of states)

* |f no such model exists, then could maybe
earn it?

e How accurate does the model need to be?

* For games, such a model always exists
— But may need to simplify it

Sample Games

Game Options Help

L] O
1230 ZOE00

MCTS Real-Time Approaches

» State space abstraction:

— Quantise state space — mix of MCTS and Dynamic
Programming — search graph rather than tree

 Temporal Abstraction

— Don’t need to make different actions 60 times per
second!

— Instead, current action is usually the same (or
predictable from) the previous one

e Action abstraction
— Consider higher-level action space

Initial Results on Video Games

* Tron (Google Al challenge)
— MCTS worked ok

* Ms Pac-Man

— Works brilliantly when given good ghost models

— Still works better than other techniques we’ve
tried when the ghost models are unknown

MCTS and Learning

Some work already on this (Silver and Sutton,
CML 2008)

mportant step towards AGI (Artificial General
ntelligence)

MCTS that never learns anything is clearly
missing some tricks

Can be integrated very neatly with TD
Learning

Multi-objective MCTS

— Currently the value of a node is expressed as a
scalar quantity

— Can MCTS be improved by making this multi-
dimensional

— E.g. for a line of play, balance effectiveness with
variability / fun

Some Remarks

 MCTS: you have to get your hands dirty!
— The theory is not there yet (personal opinion)

* To work, roll-outs must be informative
— i.e. they must return information

* How NOT to use MCTS

— A planning domain where a long string of random
actions is unlikely to reach goal

— Would need to bias roll-outs in some way to
overcome this

Some More Remarks

* MCTS: a crazy idea that works surprisingly
well!

e How well does it work?

— If there is a more applicable alternative (e.g.
standard game tree search on a fully enumerated
tree), MCTS may be terrible by comparison

* Best for tough problems for which other
methods don’t work

