
Monte Carlo Tree Search

Simon M. Lucas

Outline

• MCTS: The Excitement!

• A tutorial: how it works

• Important heuristics: RAVE / AMAF

• Applications to video games and real-time
control

The Excitement…

• Game playing before MCTS

• MCTS and GO

• MCTS and General Game Playing

Conventional Game Tree Search

• Minimax with alpha-beta
pruning, transposition tables

• Works well when:

– A good heuristic value function
is known

– The branching factor is modest

• E.g. Chess, Deep Blue, Rybka
etc.

Go

• Much tougher for
computers

• High branching factor

• No good heuristic value
function

“Although progress has been
steady, it will take many decades
of research and development
before world-championship–
calibre go programs exist”.
Jonathan Schaeffer, 2001

Monte Carlo Tree Search (MCTS)

• Revolutionised the world of computer go

• Best GGP players (2008, 2009) use MCTS

• More CPU cycles leads to smarter play

– Typically lin / log: each doubling of CPU time adds
a constant to playing strength

• Uses statistics of deep look-ahead from
randomised roll-outs

• Anytime algorithm

Fuego versus GnuGo
(from Fuego paper, IEEE T-CIAIG vol2 # 4)

General Game Playing (GGP) and
Artificial General Intelligence (AGI)

• Original goal of AI was to develop general
purpose machine intelligence

• Being good at a specific game is not a good
test of this – it’s narrow AI

• But being able to play any game seems like a
good test of AGI

• Hence general game playing (GGP)

GGP: How it works

• Games specified in predicate logic

• Two phases:
– GGP agents are given time to teach themselves

how to play the game

– Then play commences on a time-limited basis

• Wonderful stuff!

• Great challenge for machine learning,
– But interesting to see which methods work best...

• Current best players all use MCTS

MCTS Tutorial

• How it works: MCTS general concepts

• Algorithm

• UCT formula

• Alternatives to UCT

• RAVE / AMAF Heuristics

MCTS

• Builds and searches an asymmetric game tree
to make each move

• Phases are:

– Tree search: select node to expand using tree
policy

– Perform random roll-out to end of game when
true value is known

– Back the value up the tree

Sample MCTS Tree
(fig from CadiaPlayer,

Bjornsson and Finsson, IEEE T-CIAIG)

MCTS Algorithm for Action Selection
repeat N times { // N might be between 100 and 1,000,000

 // set up data structure to record line of play

 visited = new List<Node>()

 // select node to expand

 node = root

 visited.add(node)

 while (node is not a leaf) {
 node = select(node, node.children) // e.g. UCT selection

 visited.add(node)

 }

 // add a new child to the tree

 newChild = expand(node)

 visited.add(newChild)

 value = rollOut(newChild)

 for (node : visited)
 // update the statistics of tree nodes traversed

 node.updateStats(value);

 }

}

return action that leads from root node to most valued child

MCTS Operation
(fig from CadiaPlayer,

Bjornsson and Finsson, IEEE T-CIAIG)

• Each iteration starts at
the root

• Follows tree policy to
reach a leaf node

• Then perform a
random roll-out from
there

• Node ‘N’ is then added
to tree

• Value of ‘T’ back-
propagated up tree

Upper Confidence Bounds on Trees
(UCT) Node Selection Policy

• From Kocsis and Szepesvari (2006)
• Converges to optimal policy given infinite number

of roll-outs
• Often not used in practice!

Tree Construction Example

• See Olivier Teytaud’s slides from
AIGamesNetwork.org summer 2010 MCTS
workshop

AMAF / RAVE Heuristic

• Strictly speaking: each iteration should only
update the value of a single child of the root
node

• The child of the root node is the first move to
be played

• AMAF (All Moves as First Move) is a type of
RAVE heuristic (Rapid Action Value Estimate) –
the terms are often synonymous

How AMAF works

• Player A is player to move

• During an iteration (tree search + rollout)

– update the values in the AMAF table of all moves
made by player A

• Add an AMAF term to the node selection
policy

– Can also apply this to moves of opponent player?

Should AMAF work?

• Yes: a move might be good irrespective of when it
is player (e.g. playing in the corner in Othello is
ALWAYS a good move)

• No: the value of a move can depend very much
on when it is player
– E.g. playing next to a corner in Othelo is usually bad,

but might sometimes be very good

• Fact: works very well in some games (Go, Hex)
• Challenge: how to adapt similar principles for

other games (Pac-Man)?

Improving MCTS

• Default roll-out policy is to make uniform random
moves

• Can potentially improve on this by biasing move
selections:

– Toward moves that players are more likely to make

• Can either program the heuristic – a knowledge-
based approach

• Or learn it (Temporal Difference Learning)

– Some promising work already done on this

MCTS for Video Games and
Real-Time Control

• Requirements:
– Need a fast and accurate forward model

– i.e. taking action a in state s leads to state s’ (or a
known probability distribution over a set of states)

• If no such model exists, then could maybe
learn it?

• How accurate does the model need to be?

• For games, such a model always exists
– But may need to simplify it

Sample Games

MCTS Real-Time Approaches

• State space abstraction:
– Quantise state space – mix of MCTS and Dynamic

Programming – search graph rather than tree

• Temporal Abstraction
– Don’t need to make different actions 60 times per

second!

– Instead, current action is usually the same (or
predictable from) the previous one

• Action abstraction
– Consider higher-level action space

Initial Results on Video Games

• Tron (Google AI challenge)

– MCTS worked ok

• Ms Pac-Man

– Works brilliantly when given good ghost models

– Still works better than other techniques we’ve
tried when the ghost models are unknown

MCTS and Learning

• Some work already on this (Silver and Sutton,
ICML 2008)

• Important step towards AGI (Artificial General
Intelligence)

• MCTS that never learns anything is clearly
missing some tricks

• Can be integrated very neatly with TD
Learning

Multi-objective MCTS

– Currently the value of a node is expressed as a
scalar quantity

– Can MCTS be improved by making this multi-
dimensional

– E.g. for a line of play, balance effectiveness with
variability / fun

Some Remarks

• MCTS: you have to get your hands dirty!
– The theory is not there yet (personal opinion)

• To work, roll-outs must be informative
– i.e. they must return information

• How NOT to use MCTS
– A planning domain where a long string of random

actions is unlikely to reach goal

– Would need to bias roll-outs in some way to
overcome this

Some More Remarks

• MCTS: a crazy idea that works surprisingly
well!

• How well does it work?

– If there is a more applicable alternative (e.g.
standard game tree search on a fully enumerated
tree), MCTS may be terrible by comparison

• Best for tough problems for which other
methods don’t work

