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The Excitement… 

• Game playing before MCTS 

• MCTS and GO 

• MCTS and General Game Playing 



Conventional Game Tree Search 

• Minimax with alpha-beta 
pruning, transposition tables 

• Works well when: 

– A good heuristic value function 
is known 

– The branching factor is modest 

• E.g. Chess, Deep Blue, Rybka 
etc. 

 



Go 

• Much tougher for 
computers 

• High branching factor 

• No good heuristic value 
function 

“Although progress has been 
steady, it will take many decades 
of research and development 
before world-championship–
calibre go programs exist”.  
Jonathan Schaeffer, 2001 



Monte Carlo Tree Search (MCTS) 

• Revolutionised the world of computer go 

• Best GGP players (2008, 2009) use MCTS 

• More CPU cycles leads to smarter play 

– Typically lin / log: each doubling of CPU time adds 
a constant to playing strength 

• Uses statistics of deep look-ahead from 
randomised roll-outs 

• Anytime algorithm 

 



Fuego versus GnuGo 
(from Fuego paper, IEEE T-CIAIG vol2 # 4) 



General Game Playing (GGP) and 
Artificial General Intelligence (AGI) 

• Original goal of AI was to develop general 
purpose machine intelligence 

• Being good at a specific game is not a good 
test of this – it’s narrow AI 

• But being able to play any game seems like a 
good test of AGI 

• Hence general game playing (GGP) 



GGP: How it works 

• Games specified in predicate logic 

• Two phases: 
– GGP agents are given time to teach themselves 

how to play the game 

– Then play commences on a time-limited basis 

• Wonderful stuff! 

• Great challenge for machine learning, 
– But interesting to see which methods work best... 

• Current best players all use MCTS 



MCTS Tutorial 

• How it works: MCTS general concepts 

• Algorithm 

• UCT formula 

• Alternatives to UCT 

• RAVE / AMAF Heuristics 



MCTS 

• Builds and searches an asymmetric game tree 
to make each move 

• Phases are:  

– Tree search: select node to expand using tree 
policy 

– Perform random roll-out to end of game when 
true value is known 

– Back the value up the tree 



Sample MCTS Tree  
(fig from CadiaPlayer,  

Bjornsson and Finsson, IEEE T-CIAIG) 



MCTS Algorithm for Action Selection 
repeat N times {  // N might be between 100 and 1,000,000 

    // set up data structure to record line of play 

    visited = new List<Node>() 

    // select node to expand 

    node = root 

    visited.add(node) 

    while (node is not a leaf) { 
      node = select(node, node.children)  // e.g. UCT selection 

      visited.add(node) 

    } 

    // add a new child to the tree 

    newChild = expand(node) 

    visited.add(newChild) 

    value = rollOut(newChild) 

    for (node : visited) 
        // update the statistics of tree nodes traversed 

        node.updateStats(value); 

    } 

} 

return action that leads from root node to most valued child 

 



MCTS Operation 
(fig from CadiaPlayer,  

Bjornsson and Finsson, IEEE T-CIAIG) 

• Each iteration starts at 
the root 

• Follows tree policy to 
reach a leaf node 

• Then perform a 
random roll-out from 
there 

• Node ‘N’ is then added 
to tree 

• Value of ‘T’ back-
propagated up tree 



Upper Confidence Bounds on Trees 
(UCT) Node Selection Policy 

• From Kocsis and Szepesvari (2006) 
• Converges to optimal policy given infinite number 

of roll-outs 
• Often not used in practice! 



Tree Construction Example 

• See Olivier Teytaud’s slides from 
AIGamesNetwork.org summer 2010 MCTS 
workshop 



AMAF / RAVE Heuristic 

• Strictly speaking: each iteration should only 
update the value of a single child of the root 
node 

• The child of the root node is the first move to 
be played 

• AMAF (All Moves as First Move) is a type of 
RAVE heuristic (Rapid Action Value Estimate) – 
the terms are often synonymous 



How AMAF works 

• Player A is player to move 

• During an iteration (tree search + rollout) 

– update the values in the AMAF table of all moves 
made by player A 

• Add an AMAF term to the node selection 
policy 

– Can also apply this to moves of opponent player? 

 



Should AMAF work? 

• Yes: a move might be good irrespective of when it 
is player (e.g. playing in the corner in Othello is 
ALWAYS a good move) 
 

• No: the value of a move can depend very much 
on when it is player 
– E.g. playing next to a corner in Othelo is usually bad, 

but might sometimes be very good 

• Fact: works very well in some games (Go, Hex) 
• Challenge: how to adapt similar principles for 

other games (Pac-Man)? 



Improving MCTS 

• Default roll-out policy is to make uniform random 
moves 

• Can potentially improve on this by biasing move 
selections: 

– Toward moves that players are more likely to make 

• Can either program the heuristic – a knowledge-
based approach 

• Or learn it (Temporal Difference Learning) 

– Some promising work already done on this 



MCTS for Video Games and  
Real-Time Control 

• Requirements: 
– Need a fast and accurate forward model 

– i.e. taking action a in state s leads to state s’ (or a 
known probability distribution over a set of states) 

• If no such model exists, then could maybe 
learn it? 

• How accurate does the model need to be? 

• For games, such a model always exists 
– But may need to simplify it 



Sample Games 



MCTS Real-Time Approaches 

• State space abstraction: 
– Quantise state space – mix of MCTS and Dynamic 

Programming – search graph rather than tree 

• Temporal Abstraction 
– Don’t need to make different actions 60 times per 

second! 

– Instead, current action is usually the same (or 
predictable from) the previous one 

• Action abstraction 
– Consider higher-level action space 



Initial Results on Video Games 

• Tron (Google AI challenge) 

– MCTS worked ok 

• Ms Pac-Man 

– Works brilliantly when given good ghost models 

– Still works better than other techniques we’ve 
tried when the ghost models are unknown 



MCTS and Learning 

• Some work already on this (Silver and Sutton, 
ICML 2008) 

• Important step towards AGI (Artificial General 
Intelligence) 

• MCTS that never learns anything is clearly 
missing some tricks 

• Can be integrated very neatly with TD 
Learning 



Multi-objective MCTS 

– Currently the value of a node is expressed as a 
scalar quantity 

– Can MCTS be improved by making this multi-
dimensional 

– E.g. for a line of play, balance effectiveness with 
variability / fun 

 



Some Remarks 

• MCTS: you have to get your hands dirty! 
– The theory is not there yet (personal opinion) 

• To work, roll-outs must be informative 
– i.e. they must return information 

• How NOT to use MCTS 
– A planning domain where a long string of random 

actions is unlikely to reach goal 

– Would need to bias roll-outs in some way to 
overcome this 



Some More Remarks 

• MCTS: a crazy idea that works surprisingly 
well! 

• How well does it work? 

– If there is a more applicable alternative (e.g. 
standard game tree search on a fully enumerated 
tree), MCTS may be terrible by comparison 

• Best for tough problems for which other 
methods don’t work 


