QBF reasoning and applications

Enrico Giunchiglia

Laboratory of Systems and Technologies for Automated Reasoning (STAR-Lab) DIST - Univ. Genova

Thanks to: A. Biere, I. Gent, M. Narizzano, A. Rowley, A. Tacchella, ...
4th International Seminar on New Issues in Artificial Intelligence
Madrid, Jan. 31st - Feb. 4th 2011

Goals of the talk

(1) describe the problem
(2) illustrate some applications in FV and AI
(3) speak about the different approaches (so far)
(9) show the experimental results

Outline

(1) Quantified Boolean formulas (QBFs) satisfiability
(2) Applications of QBFs and QBF reasoning

- Symbolic reachability
- Symbolic diameter calculation
- Equivalence of partially specified circuits
- Conformant Planning
- Nonmonotonic reasoning
(3) Searching for efficient QBF solvers
- Solvers based on search
- Solvers based on variable elimination
- Solvers compiling QBFs to SAT
- Solvers based on Skolemization

4 State of the art in QBF reasoning

Outline

(1) Quantified Boolean formulas (QBFs) satisfiability
(2) Applications of QBFs and QBF reasoning

- Symbolic reachability
- Symbolic diameter calculation
- Equivalence of partially specified circuits
- Conformant Planning
- Nonmonotonic reasoning
(3) Searching for efficient QBF solvers
- Solvers based on search
- Solvers based on variable elimination
- Solvers compiling QBFs to SAT
- Solvers based on SkolemizationState of the art in QBF reasoning

The syntax of QBFs

- Every $Q_{i}(1 \leq i \leq n)$ is a quantifier, either existential \exists or universal \forall
- Every z_{i} is a Boolean variable
- ϕ is a Boolean formula over the set of variables $\left\{z_{1}, \ldots z_{n}\right\}$ using standard Boolean connectives and the constants \perp and T

The semantics or value of QBFs

The semantics of a QBF $Q_{1} z_{1} \cdots Q_{n} z_{n} \phi$ can be easily defined on the basis that

- $\exists x \varphi$ and $\left(\varphi_{x} \vee \varphi_{\bar{x}}\right)$ are logically equivalent.
- $\forall y \varphi$ and $\left(\varphi_{y} \wedge \varphi_{\bar{y}}\right)$ are logically equivalent.
φ_{l} is obtained from φ by substituting $/$ with \top and \bar{l} with \perp.

Examples

$\forall y \exists x .(x \leftrightarrow y)$
forall values of y, is there a value for x such that $x \leftrightarrow y$ is true?
$\exists x \forall y .(x \leftrightarrow y)$
Is there a value for x such that for all values of $y, x \leftrightarrow y$ is true?
$\exists x_{1} \forall y \exists x_{2} .\left(x_{1} \wedge y\right) \rightarrow x_{2}$
Is there a value for x_{1} such that for all values of y, there exists a value of x_{2}, such that x_{1} and y imply x_{2} ?
$\exists x_{1} \exists x_{2} \exists x_{3} .\left(x_{1} \wedge x_{2}\right) \leftrightarrow x_{3}$
Is the Boolean formula $\left(x_{1} \wedge x_{2}\right) \leftrightarrow x_{3}$ satisfiable?
$\forall y_{1} \forall y_{2} \cdot \neg\left(y_{1} \wedge y_{2}\right) \leftrightarrow\left(\neg y_{1} \vee \neg y_{2}\right)$
Is the Boolean formula $\neg\left(y_{1} \wedge y_{2}\right) \leftrightarrow\left(\neg y_{1} \vee \neg y_{2}\right)$ a tautology?

Reasoning and complexity (I)

kQBFs

A QBF $Q_{1} z_{1} \cdots Q_{n} z_{n} \phi\left(z_{1}, \ldots, z_{n}\right)$ is a k QBF if $k=1+$ the number of times $Q_{i} \neq Q_{i+1}$.

Examples

(0) the QBF $\exists x \forall y .(x \leftrightarrow y)$ is a 2QBF.
(0) the QBF $\exists x_{1} \forall y \exists x_{2} .\left(x_{1} \wedge y\right) \rightarrow x_{2}$ is a 3QBF.

- the QBF $\exists x_{1} \exists x_{2}$. $\left(x_{1} \equiv x_{2}\right)$ is a 1QBF.
- the QBF $\forall y_{1} \forall y_{2} \neg\left(y_{1} \wedge y_{2}\right)$ is a 1QBF.

Reasoning and complexity (II)

$$
\text { Let } \varphi=Q_{1} z_{1} \cdots Q_{n} z_{n} \phi \text { be } k \text { QBF }
$$

Problems
QSAT Is φ true?
kQSAT Is φ true with k known a priori?
QHornSAT Is φ true with ϕ being a set of Horn clauses?

Complexity
QSAT is the prototypical PSPACE-Complete problem
k QSAT is $\Sigma_{k} P$-Complete if $Q_{1}=\exists$ and $\Pi_{k} P$-Complete if

$$
Q_{1}=\forall
$$

QHornSAT is in P

Outline

Quantified Boolean formulas (QBFs) satisfiability

(2) Applications of QBFs and QBF reasoning

- Symbolic reachability
- Symbolic diameter calculation
- Equivalence of partially specified circuits
- Conformant Planning
- Nonmonotonic reasoning
(3) Searching for efficient QBF solvers
- Solvers based on search
- Solvers based on variable elimination
- Solvers compiling QBFs to SAT
- Solvers based on SkolemizationState of the art in QBF reasoning

Applications: overview

Theory \& Practice

In theory every problem in PSPACE can be encoded efficiently into some QBF reasoning problem. In practice QSAT solvers must be competitive w.r.t. specialized algorithms

Domains

- Symbolic reachability
- Symbolic diameter calculation
- Equivalence of partially specified circuits
- Conformant/Conditional planning
- Nonmonotonic reasoning
- Games, reasoning about knowledge,

Outline

Quantified Boolean formulas (QBFs) satisfiability

(2) Applications of QBFs and QBF reasoning

- Symbolic reachability
- Symbolic diameter calculation
- Equivalence of partially specified circuits
- Conformant Planning
- Nonmonotonic reasoning
(3) Searching for efficient QBF solvers
- Solvers based on search
- Solvers based on variable elimination
- Solvers compiling QBFs to SAT
- Solvers based on Skolemization

State of the art in QBF reasoning

Symbolic reachability - Theory

Setting

Vertices are set of boolean variables, and $\tau(S, T)$ is a Boolean formula which is true when there is an edge between S and T

Problem

Is there a walk between a set of states S and a set of states T ?
QBF encoding [Savitch 1970]

$$
\left\{\begin{aligned}
& \varphi^{2 k}(S, T)=\exists M^{k} \forall y^{k} \exists S^{k} \exists T^{k}\left(y^{k} \rightarrow\left(S \leftrightarrow S^{k} \wedge M^{k} \leftrightarrow T^{k}\right)\right) \wedge \\
&\left(\neg y^{k} \rightarrow\left(M^{k} \leftrightarrow S^{k} \wedge T \leftrightarrow T^{k}\right)\right) \wedge \\
&\left.\varphi^{k}\left(S^{k}, T^{k}\right)\right)
\end{aligned}\right.
$$

$$
\varphi^{1}=\tau(S, T)
$$

Symbolic Reachability - Practice

As a result...

Assuming that the initial state has a self loop and that there n state variables, the QBF φ^{k} has size $O(n \times \log k+|\tau(S, T)|)$. and "checks" the existence of walks between S and T of length $\leq k$.

1 Tried by many people (Rintanen and Sebastiani 2004; Dershovitz, Hanna and Katz 2005; Biere 2006; Mangassarian, Veneris and Benedetti 2010; Michael, Cashmore and Giunchiglia 2011)
2 ... but with different encodings with different properties
3 ... preliminary results show that there is hope

QBFs satisfiability
Applications of QBFs and QBF reasoning
Searching for efficient QBF solvers
State of the art in QBF reasoning

Symbolic reachability
Symbolic diameter calculation
Equivalence of partially specified circuits
Conformant Planning
Nonmonotonic reasoning

Symbolic Reachability - Future

There is life (I hope) ...

Outline

Quantified Boolean formulas (QBFs) satisfiability

(2) Applications of QBFs and QBF reasoning - Symbolic reachability

- Symbolic diameter calculation
- Equivalence of partially specified circuits
- Conformant Planning
- Nonmonotonic reasoning

©Searching for efficient QBF solvers

- Solvers based on search
- Solvers based on variable elimination
- Solvers compiling QBFs to SAT
- Solvers based on Skolemization

State of the art in QBF reasoning

Symbolic diameter calculation - Theory

Setting

Vertices are set of boolean variables, and $\tau(S, T)$ is a Boolean formula which is true when there is an edge between S and T

Problem

Let $d(S, T)$ be the length of the shortest path between S and T; what is the value of the diameter $k=\max _{S, T} d(S, T)$?

QBF encoding [Biere, Cimatti, Clarke, Zhu 1999]

Find the minimal k s.t. the following QBF is true:

$$
\begin{aligned}
& \varphi^{k}=\forall S_{1} \cdots \forall S_{k+1} \exists T_{1} \cdots T_{k} \\
& \left(\bigwedge_{i=1}^{k} \tau\left(S_{i}, S_{i+1}\right) \rightarrow\right. \\
& \left.\left(T_{1} \leftrightarrow S_{1} \wedge \bigwedge_{i=1}^{k-1} \tau\left(T_{i}, T_{i+1}\right) \wedge \bigvee_{i=1}^{k} T_{i} \leftrightarrow S_{k+1}\right)\right)
\end{aligned}
$$

Symbolic diameter calculation - Practice

As a result...

Assuming that there n state variables, the QBF φ^{k} has size $O(k \times|\tau(S, T)|+k \times n)$.
(1) Tried in [Mneimneh and Sakallah 2003; Tang, Yu, Ranjan, Malik 2004]
(2) a special purpose procedure has been proposed in [Mneimneh and Sakallah 2003]
(3) In 2007, we have shown that significant speedups are possible by considering the structure of the QBF.
\Rightarrow Not yet clear if it scales to significant designs and/or competitive wrt the specialized procedure by Mneimneh and Sakallah

Outline

Quantified Boolean formulas (QBFs) satisfiability

(2) Applications of QBFs and QBF reasoning

- Symbolic reachability
- Symbolic diameter calculation
- Equivalence of partially specified circuits
- Conformant Planning
- Nonmonotonic reasoning

。Searching for efficient QBF solvers

- Solvers based on search
- Solvers based on variable elimination
- Solvers compiling QBFs to SAT
- Solvers based on Skolemization

State of the art in QBF reasoning

Equivalence of partially specified circuits

Setting

$\varphi_{i}(X)(1 \leq i \leq m)$ is the i-th output of the specification φ over the inputs X
$\psi_{i}(X, Y)(1 \leq j \leq m)$ is the i-th output of the circuit ψ over the inputs X and the black box outputs Y

Problem

Does there exists a circuit ψ satisfying the specification φ ?
QBF encoding [Scholl, Becker 2001]
If the QBF $\exists X \forall Y \bigvee_{i=1}^{m} \varphi_{i}(X) \oplus \psi_{i}(X, Y)$ is true then ψ does not fullfill the specification φ

Example

There exists a bug iff

$$
\forall f \exists x y s t((s \equiv f(x, y)) \wedge(t \equiv(x \wedge y)) \wedge(\bar{s} \equiv t)) \text { is true, iff }
$$

$$
\exists f \forall x y s t \neg((s \equiv f(x, y)) \wedge(t \equiv(x \wedge y)) \wedge(\bar{s} \equiv t))
$$

is false, iff

$$
\forall x y \exists f \forall s t \neg((s \equiv f) \wedge(t \equiv(x \wedge y)) \wedge(\bar{s} \equiv t))
$$

is false, iff

$$
\exists x y \forall f \exists s t((s \equiv f) \wedge(t \equiv(x \wedge y)) \wedge(\bar{s} \equiv t))
$$

is true.

Outline

Quantified Boolean formulas (QBFs) satisfiability

(2) Applications of QBFs and QBF reasoning

- Symbolic reachability
- Symbolic diameter calculation
- Equivalence of partially specified circuits
- Conformant Planning
- Nonmonotonic reasoning
(3) Searching for efficient QBF solvers
- Solvers based on search
- Solvers based on variable elimination
- Solvers compiling QBFs to SAT
- Solvers based on Skolemization

State of the art in QBF reasoning

Conformant Planning

Setting

F is the set of fluents, A is the set of actions
$I(F), G(F)$ encode the set of initial and goal states, resp.
$\tau\left(F, A, F^{\prime}\right)$ is the set of possible transitions

Problem

Given a non-deterministic action domain, is there a sequence of actions that is guaranteed to achieve the goal?

QBF encoding [H. Turner - JELIA 2002]

$$
\exists A_{0} \cdots A_{k-1} \forall F_{0} \cdots \forall F_{k}\left(I\left(F_{0}\right) \wedge \bigwedge^{k-1} \tau\left(F_{t}, A_{t}, F_{t+1}\right) \rightarrow G\left(F_{k}\right)\right)
$$

Outline

Quantified Boolean formulas (QBFs) satisfiability

(2) Applications of QBFs and QBF reasoning

- Symbolic reachability
- Symbolic diameter calculation
- Equivalence of partially specified circuits
- Conformant Planning
- Nonmonotonic reasoning

(3)Searching for efficient QBF solvers

- Solvers based on search
- Solvers based on variable elimination
- Solvers compiling QBFs to SAT
- Solvers based on Skolemization

State of the art in QBF reasoning

Nonmonotonic reasoning (I)

Setting

A causal theory is a set of causal rules: $F_{i}(P) \Rightarrow G_{i}(P)$ with $i=1, \ldots, n ; P$ is a set of variables, F and G formulas

Intuitive meaning

Difference between the claim that a proposition is true and the (stronger) claim that there is a cause for it to be true

Example

$$
\text { Declaring } p \text { inertial }\left\{\begin{array}{l}
p, p^{\prime} \Rightarrow p^{\prime} \\
\neg p, \neg p^{\prime} \Rightarrow \neg p^{\prime}
\end{array}\right.
$$

Nonmonotonic reasoning (II)

Problem

(1) Decide if a causal theory $T(P)$ is consistent
(2) Decide if a fact $O(P)$ is consistent with $T(P)$ (possibly giving additional facts $I(P)$
(3) Decide if a fact $R(P)$ is entailed by $T(P)$ (possibly giving additional facts $I(P)$)

QBF encoding [V. Lifschitz - JAl 1997]

Let $T^{*}(P, Q)=\bigwedge_{i=1}^{n}\left(F_{i}(P) \rightarrow G_{i}(Q)\right)$
(1) $\exists P \forall Q\left(T^{*}(P, Q) \leftrightarrow(P \leftrightarrow Q)\right)$
(2) $\exists P \forall Q\left(T^{*}(P, Q) \leftrightarrow(P \leftrightarrow Q)\right) \wedge I(P) \wedge O(P)$
(0) $\exists P \forall Q\left(T^{*}(P, Q) \leftrightarrow(P \leftrightarrow Q)\right) \wedge I(P) \wedge \neg R(P)$

Outline

(1) Quantified Boolean formulas (QBFs) satisfiability
(2) Applications of QBFs and QBF reasoning

- Symbolic reachability
- Symbolic diameter calculation
- Equivalence of partially specified circuits
- Conformant Planning
- Nonmonotonic reasoning
(3) Searching for efficient QBF solvers
- Solvers based on search
- Solvers based on variable elimination
- Solvers compiling QBFs to SAT
- Solvers based on Skolemization
(4) State of the art in QBF reasoning

Basics

Input formula

$Q_{1} Z_{1} \cdots Q_{k} Z_{k} \phi\left(Z_{1}, \ldots, Z_{k}\right)$ where ϕ is a CNF and $Q_{i} \neq Q_{i+1}$

Techniques

- Search: Qube, Quaffle, ...
- Variable Elimination: QMRes, ...
- Compilation to SAT: Quantor, ...
- Based on Skolemization: sKizzo

More notation

- |/| denotes the variable occurring in /
- depth(I) denotes the value i s.t. $\mid \| \in Z_{i}$

Outline

Quantified Boolean formulas (QBFs) satisfiability

Applications of QBFs and QBF reasoning

- Symbolic reachability
- Symbolic diameter calculation
- Equivalence of partially specified circuits
- Conformant Planning
- Nonmonotonic reasoning
(3) Searching for efficient QBF solvers
- Solvers based on search
- Solvers based on variable elimination
- Solvers compiling QBFs to SAT
- Solvers based on Skolemization

State of the art in QBF reasoning

Search algorithm

$\operatorname{Solve}(\varphi)$
1 if all clauses are satisfied then return true
2 if a clause is violated then return FALSE
3 if l is unit in φ then return $\operatorname{SOLVE}\left(\varphi_{l}\right)$
4 if $/$ is pure in φ
then return $\operatorname{SOLVE}\left(\varphi_{I}\right)$
5 if $\varphi=\exists x \psi$
then return $\operatorname{SOLVE}\left(\varphi_{\chi}\right)$ or $\operatorname{SOLVE}\left(\varphi_{\neg x}\right)$
else return $\operatorname{SOlvE}\left(\varphi_{x}\right)$ and $\operatorname{SOLVE}\left(\varphi_{\neg x}\right)$

Unit literal

A literal / is unit in φ iff it is the only existential in some clause $c \in \phi$ and all the universal literals $I^{\prime} \in c$ are s.t. depth(I') > depth(I)

Pure literal

An existential (resp. universal) literal / is pure in φ iff $\bar{l} \notin c$ (resp. $I \notin c$) for all clauses $c \in \phi$
[Cadoli, Giovanardi, Schaerf 1998]

Solvers based on search
Solvers based on variable elimination
Solvers compiling QBFs to SAT
Solvers based on Skolemization

An example about search

$$
\exists x_{1} \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{x}_{1}, \bar{y}, x_{2}\right\},\left\{x_{1}, \bar{y}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\}
$$

QBFs satisfiability
Applications of QBFs and QBF reasoning
Searching for efficient QBF solvers
State of the art in QBF reasoning

Solvers based on search
Solvers based on variable elimination
Solvers compiling QBFs to SAT
Solvers based on Skolemization

An example about search

$$
\begin{aligned}
& \exists x_{1} \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{x}_{1}, \bar{y}, x_{2}\right\},\left\{x_{1}, \bar{y}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& \quad x_{1}=0 \\
& \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{y}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\}, \quad\right. \text { OR node } \\
& \left.\quad\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\}
\end{aligned}
$$

QBFs satisfiability
Applications of QBFs and QBF reasoning
Searching for efficient QBF solvers
State of the art in QBF reasoning

An example about search

$$
\begin{aligned}
& \exists x_{1} \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{x}_{1}, \bar{y}, x_{2}\right\},\left\{x_{1}, \bar{y}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& \quad x_{1}=0 \\
& \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{y}_{3}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\}, \quad\right. \text { OR node } \\
& \left.\quad\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& y=0 \quad \text { AND node } \\
& \exists x_{2} \exists x_{3}\left\{\left\{x_{2}, \bar{x}_{3}\right\},\right. \\
& \left.\left\{x_{2}, x_{3}\right\}\right\}
\end{aligned}
$$

QBFs satisfiability
Applications of QBFs and QBF reasoning
Searching for efficient QBF solvers
State of the art in QBF reasoning

An example about search

```
    \(\exists x_{1} \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{x}_{1}, \bar{y}, x_{2}\right\},\left\{x_{1}, \bar{y}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\}\)
        \(x_{1}=0 \square\) OR node
    \(\forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{y}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\}\right.\),
        \(\left.\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\}\)
    \(y=0 \quad \begin{aligned} & \text { AND node }\end{aligned}\)
\(\exists x_{2} \exists x_{3}\left\{\left\{x_{2}, \bar{x}_{3}\right\}\right.\),
    \(\left.\left\{x_{2}, x_{3}\right\}\right\}\)
\(x_{2}=1\)
    \{\}
    solution
```

QBFs satisfiability
Applications of QBFs and QBF reasoning
Searching for efficient QBF solvers
State of the art in QBF reasoning

An example about search

$$
\begin{aligned}
& \quad \exists x_{1} \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{x}_{1}, \bar{y}, x_{2}\right\},\left\{x_{1}, \bar{y}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& \quad x_{1}=0 \text { OR node } \\
& \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{y}^{\prime}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\right. \\
& \left.\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& y=0 \text { AND node } \quad y=1 \\
& \exists x_{2} \exists x_{3}\left\{\left\{x_{2}, \bar{x}_{3}\right\}, \quad \exists x_{2} \exists x_{3}\left\{\left\{\bar{x}_{3}\right\},\left\{\bar{x}_{2}\right\},\right.\right. \\
& \left.\left.\left\{x_{2}, x_{3}\right\}\right\} \quad\left\{x_{2}, x_{3}\right\}\right\} \\
& x_{2}=1 \left\lvert\, \begin{array}{l}
\text { Solution }
\end{array}\right.
\end{aligned}
$$

QBFs satisfiability
Applications of QBFs and QBF reasoning Searching for efficient QBF solvers
State of the art in QBF reasoning

An example about search

$$
\begin{aligned}
& \exists x_{1} \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{x}_{1}, \bar{y}, x_{2}\right\},\left\{x_{1}, \bar{y}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& x_{1}=0 \square \text { OR node } \\
& \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{y}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\right. \\
& \left.\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& y=0 \quad \frac{1}{\text { AND node }} \quad y=1 \\
& \exists x_{2} \exists x_{3}\left\{\left\{x_{2}, \bar{x}_{3}\right\}, \quad \exists x_{2} \exists x_{3}\left\{\left\{\bar{x}_{3}\right\},\left\{\bar{x}_{2}\right\},\right.\right. \\
& \left.\left\{x_{2}, x_{3}\right\}\right\} \\
& \left.\left\{x_{2}, x_{3}\right\}\right\} \\
& x_{2}=1 \left\lvert\, \begin{array}{r}
x_{2}=0 \\
x_{3}=0 \\
\{ \}
\end{array}\right. \\
& \text { solution }
\end{aligned}
$$

QBFs satisfiability
Applications of QBFs and QBF reasoning
Searching for efficient QBF solvers
State of the art in QBF reasoning

An example about search

$$
\begin{aligned}
& \exists x_{1} \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{x}_{1}, \bar{y}, x_{2}\right\},\left\{x_{1}, \bar{y}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& x_{1}=0 \quad \text { OR node } \quad{ }^{x_{1}}=1 \\
& \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{y}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\}, \quad \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{y}, x_{2}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\right.\right. \\
& \left.\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& \left.\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& y=0 \quad \frac{1}{\text { AND node }} \quad y=1 \\
& \exists x_{2} \exists x_{3}\left\{\left\{x_{2}, \bar{x}_{3}\right\}, \quad \exists x_{2} \exists x_{3}\left\{\left\{\bar{x}_{3}\right\},\left\{\bar{x}_{2}\right\}\right. \text {, }\right. \\
& \left.\left\{x_{2}, x_{3}\right\}\right\} \\
& \left.\left\{x_{2}, x_{3}\right\}\right\} \\
& x_{2}=1\left|\begin{array}{r}
x_{2}=0 \\
x_{3}=0
\end{array}\right| \\
& \text { solution } \\
& \text { conflict }
\end{aligned}
$$

QBFs satisfiability
Applications of QBFs and QBF reasoning Searching for efficient QBF solvers State of the art in QBF reasoning

An example about search

$$
\begin{aligned}
& \exists x_{1} \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{x}_{1}, \bar{y}, x_{2}\right\},\left\{x_{1}, \bar{y}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& x_{1}=0 \quad \text { OR node } x_{1}=1 \\
& \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{y}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\right. \\
& \left.\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& y=0 \quad \frac{\mid}{\text { AND node }}{ }^{y=1} \\
& \forall y \exists x_{2} \exists x_{3}\left\{\left\{\bar{y}, x_{2}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\right. \\
& \left.\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& \exists x_{2} \exists x_{3}\left\{\left\{x_{2}, \bar{x}_{3}\right\}, \quad \exists x_{2} \exists x_{3}\left\{\left\{\bar{x}_{3}\right\},\left\{\bar{x}_{2}\right\},\right.\right. \\
& \left.\left\{x_{2}, x_{3}\right\}\right\} \\
& \left.\left\{x_{2}, x_{3}\right\}\right\} \\
& \exists x_{2} \exists x_{3}\left\{\left\{x_{2}, \bar{x}_{3}\right\},\right. \\
& \left.\left\{x_{2}, x_{3}\right\}\right\} \\
& \exists x_{2} \exists x_{3}\left\{\left\{x_{2}\right\},\left\{\bar{x}_{2}\right\},\right. \\
& x_{2}=\left.1\right|_{\{ \}}{ }^{\text {solution }} \\
& \begin{aligned}
x_{2}= & 0 \\
x_{3}= & 0 \\
& \{\}\}
\end{aligned} \\
& x_{2}=1 \mid \\
& \left.\left\{x_{2}, x_{3}\right\}\right\} \\
& \text { conflict }
\end{aligned}
$$

Backjumping

Problem

Time spent visiting parts of the search space in vain because some choices may not be responsible for the result of the search

Solution [Giunchiglia, Narizzano, Tacchella 2001]

(1) for each node of the search tree, compute a subset (called "reason") of the assigned variables which are responsible for the current result; and
(2) while backtracking, skip nodes which do not belong to the reason for the discovered conflicts/solutions:

CBJ Conflict backjumping
SBJ Solution backjumping

An example with solution and conflict backjumping

\{\}
$\left\{\left\{y_{1}, y_{2}, x_{2}\right\},\left\{y_{1}, \bar{y}_{2}, x_{2}, \bar{x}_{3}\right\},\left\{y_{1}, \bar{x}_{2}, x_{3}\right\}\right.$,
$\left.\left\{\bar{y}_{1}, x_{1}, x_{3}\right\},\left\{\bar{y}_{1}, y_{2}, x_{2}\right\},\left\{\bar{y}_{1}, y_{2}, \bar{x}_{2}\right\},\left\{\bar{y}_{1}, \bar{x}_{1}, \bar{y}_{2}, \bar{x}_{3}\right\}\right\}$
$\left\langle\bar{y}_{1}, \mathrm{~L}\right\rangle\left\{\bar{y}_{1}\right\}$

$\left\langle x_{2}, \mathrm{U}\right\rangle\left\{\bar{y}_{1}\right\} \quad\left\{\left\{x_{2}, \bar{x}_{3}\right\},\left\{\bar{x}_{2}, x_{3}\right\}\right\}$
$\left\langle x_{3}, \mathrm{U}\right\rangle\left\{\bar{y}_{1}\right\}$
$\left\{\bar{y}_{1}, x_{2}, x_{3}\right\} \quad\left\}\left\{\bar{y}_{1}\right\}\right.$

$$
\begin{array}{cc}
\left\{\left\{x_{1}, x_{3}\right\},\left\{y_{2}, x_{2}\right\},\left\{y_{1}, \mathrm{R}\right\rangle\left\{y_{2}, \bar{x}_{2}\right\},\left\{\bar{x}_{1}, \bar{y}_{2}, \bar{x}_{3}\right\}\right\} \\
\left\langle\bar{x}_{1}, \mathrm{~L}\right\rangle\} & \left\langle x_{1}, \mathrm{R}\right\rangle \\
\left\langle x_{2}, \mathrm{U}\right\rangle\} & \left\langle\bar{x}^{2}, \mathrm{P}\right\rangle \\
\left\langle\bar{y}_{2}, \mathrm{P}\right\rangle\} & \left\langle\overline{\mathrm{P}}_{2}, \mathrm{P}\right\rangle \\
\left\{\bar{y}_{1}, y_{2}, x_{2}\right\}\left\langle 2_{2}, \mathrm{U}\right\rangle\} & \left\langle x_{2}, \mathrm{U}\right\rangle \\
\left\{\}\}\left\{\bar{y}_{1}, y_{2}, \bar{x}_{2}\right\}\right. & \{\}\}
\end{array}
$$

The prefix is $\forall y_{1} \exists x_{1} \forall y_{2} \exists x_{2} \exists x_{3}$.

QBFs satisfiability
Applications of QBFs and QBF reasoning
Searching for efficient QBF solvers
State of the art in QBF reasoning

The numbers of backjumping

QuBE-BJ	$=$	$<$	$>$	\ll	\gg	\approx
QuBE-BT	99	66	103	74	6	102

Learning

Problem

CBJ and SBJ may do the same wrong choices in different branches

Solution [Giunchiglia, Narizzano, Tacchella 2002; Letz 2002; Sharad, Zhang 2002]
Learn (some of) the reasons computed during backjumping:

- CBJ \Rightarrow conflict learning of "nogoods" (as in SAT)
- SBJ \Rightarrow solution learning of "goods" (specific of QBF):
(1) a good is a term (or cube or conjunction of literals)
(2) goods are to be treated as if in disjunction with the matrix
(3) SBJ enables unit universal literals $\left(\models \forall y(\bar{y} \vee \varphi) \equiv \varphi_{y}\right)$.

An example with solution learning

$$
\begin{aligned}
& \begin{array}{l}
\left\{\left\{\bar{x}_{1}, \bar{y}, x_{2}\right\},\left\{x_{1}, \bar{y}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\left\{y, x_{2}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\}\} \\
\left\langle\bar{x}_{1}, \mathrm{~L}\right\rangle\left\{x_{1}\right\} \quad\left\langle x_{1}, \mathrm{R}\right\rangle\left\{\bar{x}_{1}\right\}
\end{array} \\
& \left\{\left\{\bar{y}, \bar{x}_{3}\right\},\left\{\bar{y}, \bar{x}_{2}\right\},\left\{\underset{\text {, }}{y, x_{2}}, \bar{x}_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& \langle\bar{y}, \mathrm{~L}\rangle\{\bar{y}\} \quad\langle y, \mathrm{R}\rangle\left\{x_{1}\right\} \\
& \left\langle x_{2}, \mathrm{P}\right\rangle\{\bar{y}\} \quad\left\{x_{1}, \bar{y}, \bar{x}_{3}\right\}\left\langle\bar{x}_{3}, \mathrm{U}\right\rangle\left\{x_{1}\right\} \\
& \left\{\bar{y}, x_{2}\right\} \quad\left\} \quad\{\bar{y}\} \quad\left\{\bar{y}, \bar{x}_{2}\right\}\left\langle\bar{x}_{2}, \mathrm{U}\right\rangle\left\{\bar{y}, x_{3}\right\}\right. \\
& \left\{\}\}\left\{x_{2}, x_{3}\right\}\right.
\end{aligned}
$$

The prefix is $\exists x_{1} \forall y \exists x_{2} \exists x_{3}$.

QBFs satisfiability Applications of QBFs and QBF reasoning Searching for efficient QBF solvers State of the art in QBF reasoning

The numbers of learning

QuBE-Lrn vs. QuBE-CBJ/SLN

QuBE-Lrn vs. QuBE-CLN/SBJ

QuBE-Lrn vs. QuBE-BJ
CBJ $=$ Conflict BJ \quad SBJ $=$ Solution BJ CLN = Conflict learning SLN = Solution learning $B J=C B J+S B J \quad L r n=C L N+S L N$

Lazy data structures

Problem

Search-based solver spend most of their run time propagating and retracting assignments to variables

Cause

Detecting unit and pure literals requires keeping the status of the formula up-to-date

Solution

More efficient (lazy) data structures:
3LW (three literal watching) to detect unit literals
CW (clause watching) to detect pure literals

Pure literal detection

Problem

To detect pure literals, when a literal $/$ is assigned, each literal I^{\prime} such that $\left\{I, I^{\prime}\right\} \subseteq C$ is potentially pure.

Solution

Lazy data structures for detecting pure lits:
(1) each variable x "watches" a clause C s.t. $x \in C$ and a clause C^{\prime} s.t. $\bar{x} \in C^{\prime}$;
(2) each clause C has a backpointer to the variables watching C;
(3) when C is subsumed, if I is watching C another not subsumed clause C^{\prime} with $I \in C^{\prime}$ is searched.
[Gent. Giunchialia.Narizzano. Rowlev. Tacchella. 2003]

An example about CW

$$
\begin{array}{rl}
\forall y_{1} \exists x_{1} \forall y_{2} \exists x_{2} \exists x_{3}\{ & \overbrace{\left\{y_{1}, y_{2}, x_{2}\right\}}^{c_{1}}, \\
\underbrace{\left\{\bar{y}_{1}, y_{2}, x_{3}\right\}}_{c_{5}}\}
\end{array}, \underbrace{\left.c_{2}, y_{2}, \bar{x}_{2}\right\}}_{\left.c_{6}, \bar{y}_{2}, \bar{x}_{2}, \bar{x}_{3}\right\}}, \underbrace{\{\bar{y}_{1}, \overbrace{y_{2}}, \bar{x}_{1}, \bar{x}_{3}\}}_{c_{7}}\}
$$

$c_{1} \quad c_{5} \quad c_{6} \quad c_{2} \quad c_{7} \quad y_{2} \in c_{1}, c_{5}, c_{6}$ and $\bar{y}_{2} \in c_{2}, c_{7}$
$q_{1} \quad c_{5} \quad c_{6} \quad c_{2}$
C7
Watch c_{5} and c_{7} instead of c_{1} and c_{2}
$q_{1} \quad C_{5} \quad C_{6} \quad C_{2}$
Do nothing

Pure literal on \bar{y}_{2}

An example about CW

$$
\begin{array}{rl}
\forall y_{1} \exists x_{1} \forall y_{2} \exists x_{2} \exists x_{3}\{ & \overbrace{\left\{y_{1}, y_{2}, x_{2}\right\}}^{c_{1}}, \\
\underbrace{\left\{\bar{y}_{1}, y_{2}, x_{3}\right\}}_{c_{5}}
\end{array}, \underbrace{\left\{y_{1}, \bar{y}_{2}, y_{2}, \bar{x}_{2}, \bar{x}_{2}\right\}}_{c_{6}} c_{2}\}, \underbrace{c_{2}}_{c_{7}}, \overbrace{\left\{y_{1}, \bar{x}_{2}, x_{3}\right\}}^{c_{3}}, \overbrace{\left\{\bar{y}_{2}, \bar{x}_{1}, x_{1}, x_{3}\right\}}^{\left.c_{4}\right\}},
$$

$c_{1} \quad c_{5} \quad c_{6} \quad c_{2} \quad c_{7} \quad y_{2} \in c_{1}, c_{5}, c_{6}$ and $\bar{y}_{2} \in c_{2}, c_{7}$

$$
\downarrow y_{1}=T
$$

$\begin{array}{lllll}c_{1} & c_{5} & c_{6} & c_{2} & c_{7}\end{array}$
Watch c_{5} and c_{7} instead of c_{1} and c_{2}

$$
\downarrow x_{2}=\perp
$$

$q_{1} \quad c_{6} \quad c_{2}$
Do nothing

Pure literal on \bar{y}_{2}

An example about CW

$$
\begin{array}{rl}
\forall y_{1} \exists x_{1} \forall y_{2} \exists x_{2} \exists x_{3}\{ & \overbrace{\left\{y_{1}, y_{2}, x_{2}\right\}}^{c_{1}}, \\
\underbrace{\left\{\bar{y}_{1}, y_{2}, x_{3}\right\}}_{c_{5}}
\end{array}, \underbrace{\left\{y_{1}, \bar{y}_{2}, x_{2}, \bar{y}_{2}, \bar{x}_{2}\right\}}_{c_{6}}\}, \underbrace{c_{2}}_{c_{7}}, \overbrace{\left\{y_{1}, \bar{x}_{2}, x_{3}\right\}}^{c_{3}}, \overbrace{\left\{\bar{y}_{1}, x_{1}, x_{3}\right\}}^{\left.c_{4}, \bar{x}_{1}, \bar{x}_{3}\right\}}\},
$$

$c_{1} \quad c_{5} \quad c_{6} \quad c_{2} \quad c_{7} \quad y_{2} \in c_{1}, c_{5}, c_{6}$ and $\bar{y}_{2} \in c_{2}, c_{7}$

$$
\downarrow y_{1}=T
$$

$\begin{array}{lllll}c_{1} & c_{5} & c_{6} & C_{2} & c_{7}\end{array}$
Watch c_{5} and c_{7} instead of c_{1} and c_{2}

$$
\downarrow x_{2}=\perp
$$

$\begin{array}{lllllll}c_{1} & c_{5} & c_{6} & c_{2} & c_{7} & & \text { Do nothing }\end{array}$

$$
\downarrow x_{1}=\perp
$$

Pure literal on \bar{y}_{2}

An example about CW

$$
\begin{array}{rl}
\forall y_{1} \exists x_{1} \forall y_{2} \exists x_{2} \exists x_{3}\{ & \overbrace{\left\{y_{1}, y_{2}, x_{2}\right\}}^{c_{1}}, \\
\underbrace{\left\{\bar{y}_{1}, y_{2}, x_{3}\right\}}_{c_{5}}
\end{array}, \underbrace{\left\{y_{1}, \bar{y}_{2}, x_{2}, \bar{y}_{2}, \bar{x}_{2}\right\}}_{c_{6}}\}, \underbrace{c_{2}}_{c_{7}}, \overbrace{\left\{y_{1}, \bar{x}_{2}, x_{3}\right\}}^{c_{3}}, \overbrace{\left\{\bar{y}_{1}, \bar{y}_{1}, x_{3}\right\}}^{\left.c_{4}, \bar{x}_{1}, \bar{x}_{3}\right\}}\},
$$

$c_{1} \quad c_{5} \quad c_{6} \quad c_{2} \quad c_{7} \quad y_{2} \in c_{1}, c_{5}, c_{6}$ and $\bar{y}_{2} \in c_{2}, c_{7}$

$$
\downarrow y_{1}=\top
$$

$\begin{array}{lllll}C_{1} & C_{5} & C_{6} & C_{2} & C_{7}\end{array}$
Watch c_{5} and c_{7} instead of c_{1} and c_{2}

$$
\downarrow x_{2}=\perp
$$

$\begin{array}{lllll}c_{1} & c_{5} & c_{6} & C_{2} & c_{7}\end{array}$
Do nothing

$$
\downarrow x_{1}=\perp
$$

$c_{1} \quad c_{5} \quad c_{6} \quad c_{2} \quad q_{1} \quad$ Pure literal on \bar{y}_{2}

QBFs satisfiability
Applications of QBFs and QBF reasoning Searching for efficient QBF solvers State of the art in QBF reasoning

Solvers based on search
Solvers based on variable elimination
Solvers compiling QBFs to SAT
Solvers based on Skolemization

The numbers of pure literals and learning

QuBE-BJ vs. QuBE-BJ(P)

Pure literals and learning

(Standard) Def.

l is pure if \bar{l} does not belong to any active constraint

Pure literals + learning

Problem

(Standard) pure literal with learning is not practical

Solution

(New) def: A literal $/$ is pure if \bar{I} does not belong to any not subsumed clause in the matrix of the input formula

Problem
Pure literals may cause dead-ends because of the learned constraints, and thus they require the computation of a "reason"

Solution [Giunchiglia, Narizzano, Tacchella 2004]

Prevent propagation of pure literals on learned constraints

QBFs satisfiability
Applications of QBFs and QBF reasoning
Searching for efficient QBF solvers
State of the art in QBF reasoning

Solvers based on search
Solvers based on variable elimination
Solvers compiling QBFs to SAT
Solvers based on Skolemization

The numbers of pure literals + learning

QuBE-Lrn(P) vs. QuBE-Lrn

QuBE-Lrn(P) vs. QuBE-BJ(P)

Outline

Quantified Boolean formulas (QBFs) satisfiability

Applications of QBFs and QBF reasoning

- Symbolic reachability
- Symbolic diameter calculation
- Equivalence of partially specified circuits
- Conformant Planning
- Nonmonotonic reasoning
(3) Searching for efficient QBF solvers
- Solvers based on search
- Solvers based on variable elimination
- Solvers compiling QBFs to SAT
- Solvers based on Skolemization

State of the art in QBF reasoning

Variable elimination - Theory I

Elimination of innermost \exists Vars

$$
Q_{1} z_{1} \ldots Q_{n} z_{n} \exists v\left(\left(\bar{v} \vee z_{1}\right) \wedge\left(\bar{v} \vee z_{2}\right) \wedge\left(v \vee z_{3}\right) \wedge \Phi\right)
$$

is logically equivalent to

$$
Q_{1} z_{1} \ldots Q_{n} z_{n}\left(\left(z_{3} \vee z_{1}\right) \wedge\left(z_{3} \vee z_{2}\right) \wedge \Phi\right)
$$

Elimination of innermost \forall Vars

$$
Q_{1} z_{1} \ldots Q_{n} z_{n} \forall v\left(\left(\bar{v} \vee z_{1}\right) \wedge\left(\bar{v} \vee z_{2}\right) \wedge\left(v \vee z_{3}\right) \wedge \Phi\right)
$$

is logically equivalent to

$$
Q_{1} z_{1} \ldots Q_{n} z_{n}\left(\left(z_{1}\right) \wedge\left(z_{2}\right) \wedge\left(z_{3}\right) \wedge \phi\right)
$$

Variable Elimination - Theory II

\Rightarrow Variables can be eliminated one by one starting from the innermost till

- either the empty clause is generated: the formula is false;
- or the matrix becomes empty: the formula is true.
[Davis, Putnam 1960]

Variable elimination - Practice

Problems

(1) Eliminating a universal variable is easy and does not increase the size of the formula.
(2) The elimination of existential variables may cause an exponential blow up.
(Partial) solution

- Simplification rules
(2) Automatic detection and elimination of subsumed clauses
(Heuristics for deciding which of the innermost variables has to be eliminated first.

QMRes [Pan, Vardi 2004]

(1) each clause is represented via its characteristic function and a set of clauses is represented via ZDD. ZDD allows for

- efficient detection of unit clauses
- subsumption free representation of sets of clauses
- efficient elimination of existential variables by operating on cofactors
(2) a heuristic (called "Maximum Cardinality Search (MCS)" is used to decide which existential variable has to be eliminated next.

Clause representation \& ZDD [Chatalic, Simon 2000]

(1) For each variable x in the QBF, there are two ZDD variables x and \bar{x}
(2) A clause is represented by a path leading to 1
(3) Variables not appearing in a clause are not represented in the corresponding path

Outline

Quantified Boolean formulas (QBFs) satisfiability

Applications of QBFs and QBF reasoning

- Symbolic reachability
- Symbolic diameter calculation
- Equivalence of partially specified circuits
- Conformant Planning
- Nonmonotonic reasoning
(3) Searching for efficient QBF solvers
- Solvers based on search
- Solvers based on variable elimination
- Solvers compiling QBFs to SAT
- Solvers based on Skolemization

State of the art in QBF reasoning

Solvers compiling QBFs to SAT - Theory \& Practice

Fact

$$
\models \forall y \cdot \varphi \equiv\left(\varphi_{y} \wedge \varphi_{\bar{y}}\right)
$$

\Rightarrow it is possible to "expand" all the \forall-vars and reduce to SAT

Problem

The resulting SAT formula may very easily blow up in space

(Partial) Solutions

(Expand \forall vars only when necessary, after simplification
(2) It does not make sense to expand $\mathrm{a} \forall$ variable if there exists another \forall variable with higher depth

Quantor [Biere 2004]

Simplification consists in:
(1) propagating unit and pure literals
(2) eliminating occurrences of universal variables when "at the end" of the clause
(3) substituting I (resp. I) with x (resp. \bar{x}) if $I \equiv x$ is in the matrix
© eliminating (backward) subsumed clauses

Outline

Quantified Boolean formulas (QBFs) satisfiability

Applications of QBFs and QBF reasoning

- Symbolic reachability
- Symbolic diameter calculation
- Equivalence of partially specified circuits
- Conformant Planning
- Nonmonotonic reasoning
(3) Searching for efficient QBF solvers
- Solvers based on search
- Solvers based on variable elimination
- Solvers compiling QBFs to SAT
- Solvers based on Skolemization

State of the art in QBF reasoning

Skolemization

The prefix is: $\forall y_{1} \exists x_{1} \forall y_{2} \exists x_{2}$.
The following 4 formulas are equisatisfiable:

$$
\begin{gathered}
\left\{\left\{y_{1}, x_{1}, \bar{x}_{2}\right\},\left\{\bar{y}_{1}, y_{2}, x_{2}\right\},\left\{\bar{x}_{1}, \bar{X}_{2}\right\},\left\{\bar{y}_{1}, x_{1}\right\}\right\} \\
\Downarrow \downarrow \\
\left\{\left\{y_{1}, X^{1}\left(y_{1}\right), \bar{X}^{2}\left(y_{1}, y_{2}\right)\right\},\left\{\bar{y}_{1}, y_{2}, X^{2}\left(y_{1}, y_{2}\right)\right\},\left\{\bar{X}^{1}\left(y_{1}\right), \bar{X}^{2}\left(y_{1}, y_{2}\right)\right\},\left\{\bar{y}_{1}, X^{1}\left(y_{1}\right)\right\}\right\} \\
\left.\left\{\left\{X^{1}(0), \bar{X}^{2}\left(0, y_{2}\right)\right\},\left\{X^{2}(1,0)\right\},\left\{\bar{X}^{1}\left(y_{1}\right), \bar{X}^{2}\left(y_{1}, y_{2}\right)\right\},\left\{X^{1}(1)\right\}\right\}\right\} \\
\left.\left.\Downarrow \downarrow, X^{2}(0), \bar{X}^{2}(0,0)\right\},\left\{X^{1}(0), \bar{X}^{2}(0,1)\right\},\left\{X^{2}(1,0)\right\},\left\{\bar{X}^{1}\left(y_{1}\right), \bar{X}^{2}\left(y_{1}, y_{2}\right)\right\},\left\{X^{1}(1)\right\}\right\}
\end{gathered}
$$

sKizzo [Benedetti 2004]

- sKizzo is a solver based on a symbolic representation of the skolem form.
- It integrates all the reasoning strategies seen before, and more (hyper-binary resolution)

QBFs satisfiability
Applications of QBFs and QBF reasoning
Searching for efficient QBF solvers
State of the art in QBF reasoning

The architecture of sKizzo

QBFs satisfiability
Applications of QBFs and QBF reasoning Searching for efficient QBF solvers State of the art in QBF reasoning

The architecture of sKizzo

Outline

(1) Quantified Boolean formulas (QBFs) satisfiability
(2) Applications of QBFs and QBF reasoning

- Symbolic reachability
- Symbolic diameter calculation
- Equivalence of partially specified circuits
- Conformant Planning
- Nonmonotonic reasoning
(3) Searching for efficient QBF solvers
- Solvers based on search
- Solvers based on variable elimination
- Solvers compiling QBFs to SAT
- Solvers based on Skolemization
(4) State of the art in QBF reasoning

S.O.T.A. in 2010 - fixed class [www.qbflib.org]

Solver	Total	Sat	Unsat U	Unique
	\# Time	\# Time	Time \#	\#Time
aqme-10	43432091.	118415825.6	25016265.53	3909.03
QuBE7	41052142.	118935489.7	22116652.49	91402.62
QuBE7-m	39340786.	316621338.5	22719447.80	
QuBE7-c	3893492	816418293.8	22516632.90	
depqbf	37021515	316413771.8	2067743.511	1434.81
qmaiga	36143058	118020696.6	18122361.41	
depqbf-pre	35618995	917212453.8	1846542.110	
AIGSolve	32922786	617112091.5	15810695.11	193
struqs-10	24032839	710913805.5	13119034.21	1589.23
nenofex-qbfeval1022	O2513786	91098241.86	1165545.073	3350.89
quantor-3.1	2056711.3	71004130.62	1052580.751	1585.96

S.O.T.A. in 2010- FV problems [www.qbilib.org]

Family	Overall			Time	Hardness EA MEMH			
	N \# S U							
Abduction	52	5132	19	203.73	14	36		
Adder	15	159	6	568.79	12	3	3	
blackbox-01X-QBF	59	5656	387.72	8	48			
blackbox_design	2	22	1.68	2				
Blocks	5	52	3	16.05	1	4	4	
BMC	18	177	10	64.16	3	14		
C432	4	41	3	0.52	1	3		
C499	2	22	0.9	2				
C5315	7	31	2	3.8	1	2	2	
C6288	4	22	16.88	1	1			
C880	1	11	0.18	1				
Chain	1	11	0.02	1				
circuits	3	33	18	1	2			
comp	2	22	0.03	2				
conformant_planning	15	104		1042.31	2	7		¥

S.O.T.A. in 2010 [www.qbflib.org]

Family	Overall	Time	Reference solver
	N \# S U		
Abduction	52503119 100.48aqme-10		
Adder	15 13 13851507.56 nenofex-qbfeval10		
blackbox-01X-QBF	5954 0541709.51QuBE7		
blackbox_design	2220	1.72QuBE7-c	
Blocks	5 5 5123	16.16quantor-3.1	
BMC	1817710	130.59quantor-3.1	
C432	4 4 1 3	0.57 qmaiga	
C499	$2 \quad 202$	0.9quantor-3.1	
C5315	$7 \begin{array}{llll}7 & 3 & 1 & 2\end{array}$	4.91 quantor-3.1	
C6288	$4 \quad 220$	21.09aqme-10	
C880	$1 \begin{array}{llll}1 & 1 & 1 & 0\end{array}$	0.18QuBE7-c	
Chain	$1 \begin{array}{llll}1 & 1 & 1 & 0\end{array}$	0.02qmaiga	
circuits	$3{ }_{3} 3130$	18.16AIGSolve	
comp	2 L 002	0.04depqbf-pre	
conformant_planning	15945	1044.84quantor-3.1	

Conclusions

- Many progresses in QBF reasoning in the last 5 years
- Different techniques are best in different cases
- Good results in many cases

Future work

I expect more progress (especially for search based solvers) with

- circuit QBF reasoning
- "more powerful" pruning rules and learning mechanisms
- heuristics
- relaxations

Acks

Armin Biere, Ian Gent, Massimo Narizzano, Andrew Rowley, Armando Tacchella, ...

