
Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Satisfiability and Preferences: Theory and
Applications to Planning and Testing

Enrico Giunchiglia

Laboratory of Systems and Technologies for Automated Reasoning (STAR-Lab)
DIST - Univ. Genova

Thanks to: E. Di Rosa, M. Maratea, P. Marin, M. Narizzano, A. Puddu . . .

4th International Seminar on New Issues in Artificial
Intelligence

Madrid, Jan. 31st - Feb. 4th 2011

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 1

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Motivations - 1

Propositional Satisfiability (SAT) is a success story in CS/AI:
1 current SAT solvers can determine the satisfiability or

unsatisfiability of problems with hundreds of thousands
variables, and

2 to solve a combinatorial problem P it is often better to
translate it to SAT and then apply a SAT solver than using
a dedicate solver for P.

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 2

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Motivations - 2

However,
1 In many cases it is not sufficient to determine the

satisfiability of a set of constraints,
2 E.g., we may want to find models satisfying also as many

other constraints as possible (as in MAXSAT) or which
minimize a given objective function (as in MINONE),

3 These additional preferences, are often independent of the
set of constraints and can be partially ranked qualitatively
or quantitatively, and

4 introduce a ranking on the models and thus the notion of
optimal model.

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 3

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Goals of the talk

1 Introduce a simple formalism for expressing (qualitative)
preferences

2 Show how it is possible to compute optimal models by
slightly modifying existing SAT solvers

3 discuss the applicability of the theory to Planning (done)
and ATG (work in progress).

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 4

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Outline

1 Propositional Satisfiability (SAT)

2 Preferences
Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

3 Planning as satisfiability
Automated Symbolic Planning
Soft Goals
Plan quality

4 Automatic Test Generation
Automatic Test Generation with CBMC
Experimental Analysis

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 5

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Outline

1 Propositional Satisfiability (SAT)

2 Preferences
Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

3 Planning as satisfiability
Automated Symbolic Planning
Soft Goals
Plan quality

4 Automatic Test Generation
Automatic Test Generation with CBMC
Experimental Analysis

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 6

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Boolean logic: syntax

Given a set of variables X = {x1, . . . , xn} a formula is either:
a variable x ∈ X
¬α where α is a formula
(α ◦ β) where α, β are formulas and ◦ ∈ {∧,∨,⊃,≡,⊕}

Example

(x1 ∧ ¬x1) Absurdity
(¬(x1 ∨ x2) ≡ (¬x1 ∧ ¬x2)) De Morgan’s law
((x1 ⊕ x3)⊕ (x2 ∧ x4)) MSB of a 2-bit adder with inputs

x1x2 and x3x4

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 7

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Propositional Satisfiability

Formula
A formula ϕ is a set {C1, . . . ,Cn} of clauses
A clause Ci is a set {l1, . . . , lm} of literals
A literal l is a variable x or the negation x of a variable x .

Assignment

An assignment µ is a maximally consistent set of literals
An assignment µ satisfies (or is a model of) a formula ϕ if
for each C ∈ ϕ, µ ∩ C 6= ∅

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 8

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Propositional Satisfiability

Arbitrary formulas (not necessarily in CNF) and mathematical
(linear) expressions with finite range variables can be coded in
SAT.

s1 = (

sz }| {
(x1 ⊕ x3)⊕
(x2 ∧ x4)| {z }

c

)

(s1 is the MSB of a
2 bit adder with input
x1x2 and x3x4)

(s ∨ c)∧
(¬s ∨ ¬c)∧
(¬s ∨ x1 ∨ x3)∧
(¬s ∨ ¬x1 ∨ ¬x3)∧
(s ∨ ¬x1 ∨ x3)∧
(s ∨ x1 ∨ ¬x3)∧
(c ∨ ¬x2 ∨ ¬x4)∧
(¬c ∨ x2)∧
(¬c ∨ x4)

{
{s, c},
{s, c},
{s, x1, x3},
{s, x1, x3},
{s, x1, x3},
{s, x1, x3},
{c, x2, x4},
{c, x2},
{c, x4}
}

{l} is a unit clause

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 9

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Search algorithm

DLL(ϕ,µ)
1 if all clauses are satisfied

then return µ
2 if a clause is violated

then return FALSE
3 if {l} is a unit clause in ϕ

then return DLL(ϕl ,µ ∪ {l})
4 l := a literal in ϕ;

return DLL(ϕl ,µ ∪ {l}) or
DLL(ϕl ,µ ∪ {l})

[Davis, Logemann, Loveland
1962]

Key technologies in today’s DLL
implementations:

1 (Lazy) data structures for efficient
unit clause detection

2 (UIP-based) Learning for
backjumping over irrelevant nodes
and avoid repeating the same
mistakes in different parts of the
search tree

3 Dynamic heuristics either based on
learning or on unit-propagation

minisat has less than 1Kloc

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 10

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Search algorithm

DLL(ϕ,µ)
1 if all clauses are satisfied

then return µ
2 if a clause is violated

then return FALSE
3 if {l} is a unit clause in ϕ

then return DLL(ϕl ,µ ∪ {l})
4 l := a literal in ϕ;

return DLL(ϕl ,µ ∪ {l}) or
DLL(ϕl ,µ ∪ {l})

[Davis, Logemann, Loveland
1962]

Key technologies in today’s DLL
implementations:

1 (Lazy) data structures for efficient
unit clause detection

2 (UIP-based) Learning for
backjumping over irrelevant nodes
and avoid repeating the same
mistakes in different parts of the
search tree

3 Dynamic heuristics either based on
learning or on unit-propagation

minisat has less than 1Kloc

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 10

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Example

Assume we are given {Fish,Meat}, DLL will return
1 {Fish,Meat} if DLL branches on {Fish,Meat},
2 {Fish,Meat} if DLL branches on {Fish},
3 {Fish,Meat} if DLL branches on {Meat}.

However, it may be the case that not all models are equally
good. For instance, I may prefer to stay on diet, or I may prefer
Fish to Meat, or viceversa.

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 11

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

Outline

1 Propositional Satisfiability (SAT)

2 Preferences
Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

3 Planning as satisfiability
Automated Symbolic Planning
Soft Goals
Plan quality

4 Automatic Test Generation
Automatic Test Generation with CBMC
Experimental Analysis

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 12

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

Qualitative Preferences on Literals - 1

Qualitative Preference on Literals
A preference is a poset S,≺ of literals.

Intuitively:
1 S represents the literals that we would like to have

satisfied,
2 ≺ models the relative importance of our preference.

Example

S = {Fish,Meat} with Fish ≺ Meat, models the fact we like to
have Fish and Meat and that we prefer Fish over Meat.

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 13

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

Qualitative Preferences on Literals - 2

µ ≺ µ′

µ and µ′ are assignments. µ ≺ µ′ if and only if
1 there exists a literal l ∈ S with l ∈ µ and l ∈ µ′; and
2 ∀l ∈ S ∩ (µ′ \ µ), ∃l ′ ∈ S ∩ (µ \ µ′) such that l ′ ≺ l .

Example

S = {Fish,Meat} with Fish ≺ Meat. Then,

{Fish,Meat} ≺ {Fish,Meat} ≺ {Fish,Meat} ≺ {Fish,Meat};

If ϕ is (Fish ∨Meat), the optimal model is {Fish,Meat}.

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 14

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

Qualitative Preferences on Literals - 2

Advantages:
1 Simple,
2 Can be generalized to “qualitative preferences on

formulas” by introducing “definitions” or “names”
3 Can be used to model “quantitative preferences on

literals/formulas” by Boolean encoding of the objective
function

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 15

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

Quantitative preferences

1 〈S, c〉 is a quantitative preference, where S is a set of
literals (formulas) and c : S 7→ N.

2 The cost of an assignment µ is∑
l∈S:µ 6|=l

c(l).

3 A model (of a given formula) is optimal if it has a minimal
associated cost.

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 16

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

From quantitative to qualitative preferences

1 ϕ is the given formula, and S, c is a quantitative precerence
2 adder(S, c) is a Boolean formula corresponding to the cost

function
3 bm, . . . ,b0 is the sequence of variables (bits) representing

the value of adder(S, c)

4 S′ is the set {bm, . . . ,b0} with
5 bm ≺′ bm−1 ≺′ . . . ≺′ b0

Fact
A model µ is optimal wrt S, c iff µ is optimal wrt S′,≺′.

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 17

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

Indeed, if our preferences are such that

bm ≺′ bm−1 ≺′ . . . ≺′ b0

then, the set of assignments is ordered as follows:

bmbm−1 . . . b0 . . .

≺′ bmbm−1 . . . b0 . . .
≺′ . . .

≺′ bmbm−1 . . . b0

For instance, if m = 1, we have

{b1,b0 . . .} ≺′ {b1,b0 . . .} ≺′ {b1,b0 . . .} ≺′ {b1,b0 . . .}.

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 18

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

There are several ways to compute adder(S, c):
Warners 1998 : linear number of clauses (8|S|) and variables

(2|S|)
Bailleux & Boufkhad 2003 : quadratic number of clauses

Sinz 2005 : (slightly) improved versions of the previous

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 19

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

OPTSAT

S,≺ := a qualitative preference on literals;
ψ := >; µopt := ∅

function OPTSAT-R(ϕ,µ)
1 if (⊥ ∈ (ϕ ∪ ψ)µ) return FALSE;
2 if (µ is total) µopt := µ; ψ := Reason(µ,S,≺); return FALSE;
3 if ({l} ∈ (ϕ ∪ ψ)µ) return OPTSAT-R(ϕ, µ ∪ {l});
4 l := ChooseLiteral(ϕ ∪ ψ, µ);
5 return OPTSAT-R(ϕ, µ ∪ {l}) or OPTSAT-R(ϕ, µ ∪ {l}).

Fact
At the end of computation, µopt stores an optimal model if ϕ is
satisfiable, and the empty set otherwise.

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 20

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

Outline

1 Propositional Satisfiability (SAT)

2 Preferences
Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

3 Planning as satisfiability
Automated Symbolic Planning
Soft Goals
Plan quality

4 Automatic Test Generation
Automatic Test Generation with CBMC
Experimental Analysis

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 21

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

One optimal solution by guiding search (ECAI’06)

Given a set of clauses ϕ and a qualitative prefence S,≺, an
optimal model can be computed by

1 modifying DLL heuristics in order to branch following the
partial order on literals:

Pros : The first generated model is guaranteed to be
optimal

Cons : Imposing an order on the heuristic can produce
an exponential degradation in the performances
(at least in theory).

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 22

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

Example

Assumptions
1 S = {Fish,Meat} with Fish ≺ Meat

In this case, OPTSAT-06 looks for models with
1 {Fish,Meat}. If no such model exists
2 {Fish,Meat}. If no such model exists
3 {Fish,Meat}. If no such model exists
4 {Fish,Meat}. If no such model exists
5 returns False.

If ϕ is (Fish ∨Meat) the model returned is {Fish,Meat}.

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 23

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

All optimal solutions by guiding search (CP’08)

Given a set of clauses ϕ and a qualitative prefence S,≺, all
optimal models can be computed by

1 modifying DLL heuristics in order to branch following the
partial order on literals;

2 When an optimal model µ is found, a formula ψ blocking
the models dominated by µ is added to ϕ;

3 search is continued looking for other optimal models.

Pros : ψ is computed in polynomial time
Pros : Only optimal models are generated

Cons : Whenever an optimal model is generated, a
formula is added to the input one.

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 24

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

Outline

1 Propositional Satisfiability (SAT)

2 Preferences
Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

3 Planning as satisfiability
Automated Symbolic Planning
Soft Goals
Plan quality

4 Automatic Test Generation
Automatic Test Generation with CBMC
Experimental Analysis

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 25

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

One optimal solution by generate&test (ECAI’08)

Given a set of clauses ϕ and a qualitative prefence S,≺, an
optimal model can be computed by

1 generating a not necessarily optimal model µ of ϕ,
2 testing if µ is optimal and

1 returning µ if optimal, or
2 adding a formula which forces models µ′ ≺ µ and

continuing the search otherwise.

Pros : No modifications in the heuristic is needed
Cons : It may generate non-optimal models.

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 26

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

Solving SAT problems with preferences - II

Fact
Let µ and µ′ be two total assignments. Let S,≺ be a qualitative
preference. µ′ is preferred to µ wrt S,≺ if and only if µ′ satisfies

(∨l:l∈S,l 6∈µl) ∧ (∧l ′:l ′∈S,l ′∈µ(∨l:l∈S,l 6∈µ,l≺l ′ l ∨ l ′)). (1)

Special cases:
if S = ∅ or S ⊆ µ, (1) is FALSE, i.e., µ is already optimal;
if ≺= ∅, (1) is

(∨l:l∈S,l 6∈µl) ∧ (∧l:l∈S,l∈µl),

i.e., for any assignment µ′ satisfying (1),

S ∩ µ ⊂ S ∩ µ′

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 27

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

Solving SAT problems with preferences - II

Fact
Let µ and µ′ be two total assignments. Let S,≺ be a qualitative
preference. µ′ is preferred to µ wrt S,≺ if and only if µ′ satisfies

(∨l:l∈S,l 6∈µl) ∧ (∧l ′:l ′∈S,l ′∈µ(∨l:l∈S,l 6∈µ,l≺l ′ l ∨ l ′)). (1)

Special cases:
if S = ∅ or S ⊆ µ, (1) is FALSE, i.e., µ is already optimal;
if ≺= ∅, (1) is

(∨l:l∈S,l 6∈µl) ∧ (∧l:l∈S,l∈µl),

i.e., for any assignment µ′ satisfying (1),

S ∩ µ ⊂ S ∩ µ′

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 27

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

Example

Assumptions

ϕ = (Fish ∨Meat),S = {Fish,Meat} and Fish ≺ Meat

In the “worst” case, OPTSAT-08
1 finds the model {Fish,Meat}, and then looks for models of

(Fish ∨Meat) ∧ (Fish ∨Meat);
2 finds the model {Fish,Meat}, and then looks for models of

(Fish ∨Meat) ∧ Fish;
3 finds the model {Fish,Meat}, and then looks for models of

(Fish ∨Meat) ∧ Fish ∧Meat;
4 returns FALSE: the last model found is optimal.

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 28

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

All optimal solutions by generate&test

Given a set of clauses ϕ and a qualitative prefence S,≺, all
optimal models can be computed by

1 generating a not necessarily optimal model µ of ϕ,
2 testing if µ is optimal and

1 printing µ if optimal,
2 learning a formula blocking the assignments µ′ : µ ≺ µ′,

and continuing the search.

Pros : No modifications in the heuristic is needed
Cons : It may generate non-optimal models.

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 29

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

Outline

1 Propositional Satisfiability (SAT)

2 Preferences
Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

3 Planning as satisfiability
Automated Symbolic Planning
Soft Goals
Plan quality

4 Automatic Test Generation
Automatic Test Generation with CBMC
Experimental Analysis

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 30

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

MIN-ONE and MIN-ONE⊆

Setting

ϕ is a formula; P is the set of variables in ϕ; µ, µ′ total
assignments.

MIN-ONE and MIN-ONE⊆

The goal is to minimize the set of variables set to TRUE. Two
possible definitions:

1 Quantitative, MIN-ONE: µ ≺ µ′ if |µ ∩ P| < |µ′ ∩ P|.
2 Qualitative,MIN-ONE⊆: µ ≺ µ′ if µ ∩ P ⊂ µ′ ∩ P.

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 31

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

Solving MIN-ONE and MIN-ONE⊆ with preferences

Setting

ϕ is a formula; P is the set of variables in ϕ; P = {x : x ∈ P}

MIN-ONE⊆

µ is an optimal model of MIN-ONE⊆ iff µ is an optimal model wrt
the qualitative preference P, ∅.

MIN-ONE

µ is an optimal model of MIN-ONE iff µ is an optimal model wrt
the quantitative preference P, c with c a constant function.

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 32

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

MAX-SAT and MAX-SAT⊆

Setting

ϕ is a formula; µ, µ′ are total assignments.

MAX-SAT and MAX-SAT⊆

1 In MAX-SAT⊆ problems, µ ≺ µ′ if the set of clauses satisfied
by µ is a superset of the clauses satisfied by µ′

2 In MAX-SAT problems, µ ≺ µ′ if the cardinality of the set of
clauses satisfied by µ is bigger than the cardinality of the
set of the clauses satisfied by µ′

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 33

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

From MAX-SAT and MAX-SAT⊆ to MIN-ONE and
MIN-ONE⊆

Intuition
1 Given a formula ϕ, a new variable vi is added to the clause

Ci ∈ ϕ, e.g., {{a}, {b, c}} becomes {{a, v1}{b, c, v2}}.
2 MAX-SAT and MAX-SAT⊆ correspond to miniminize the set

of variables vi assigned to 1, and thus reduce (with some
care) to MIN-ONE and MIN-ONE⊆ problems.

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 34

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

Experimental results

class n OPTSAT-06 OPTSAT-08 OPTSAT-06 OPTSAT-08
1 Partial MINONE 21 77.99(19) 2.7(21) 74.28(21) 69.89(21)
2 MINONE 26 0.69(26) 0.2(26) 93.24(24) 23.99(25)
3 MAXSAT 35 26.68(34) 11.25(35) 218.86(31) 175.12(31)
4 MAXCUT/spinglass 5 0.01(5) 0.01(5) 7.56(1) 7.52(1)
5 MAXCUT/dimacs_mod 62 0.01(62) 0.01(62) 66.86(4) 21.61(3)
6 PSEUDO/garden 7 0.02(7) 0.01(7) 22.8(5) 36.66(5)
7 PSEUDO/logic-synthesis 17 0.03(17) 0.01(17) 90.36(3) 338.26(3)
8 PSEUDO/primes 148 4.81(130) 0.19(131) 31.8(103) 60.59(109)
9 PSEUDO/routing 15 11.69(15) 3.12(15) 41.49(15) 36.1(15)

10 MAXONE/structured 60 0.96(60) 0.13(60) 293(56) 7.87(58)
11 MAXCLIQUE/structured 62 0.01(62) 0.06(62) 54.14(19) 178.04(23)

Table: Qualitative (cols 4-5) and Quantitative (cols 6-7) preferences

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 35

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

Experimental results: considerations

1 MIN-ONE/MIN-ONE⊆ and MAX-SAT/MAX-SAT⊆ problems
involve large set of objects (the whole set of variables and
clauses respectively in the formula).

2 In many application domains, like planning, the
optimization problem involves a few objects, and in these
cases we can expect OPTSAT-06 to perform well

3 The results for the quantitative case can vary depending
on the way the objective function is encoded (e.g, Warners,
Boufkhad,. . .)

4 The results for OPTSAT-08 depend on the number of
intermediate models generated before finding the optimal

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 36

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

Experimental analysis - OPTSAT-06

Figure: Performances of SATPLAN(w)/(b)/(s) wrt SATPLAN as a
function of the ration between the number of preferences and the
number of variables.

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 37

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

Experimental results - OPTSAT-08

class T1 Q1 nSols Tf Qf

1 Partial MINONE 2.68 45.5 1.5 2.7 44.1
2 MINONE 0.19 751.6 1 0.2 751.6
3 MAXSAT 0.05 8605.2 20.2 11.25 8847.6
4 MAXCUT/spinglass 0.01 770.4 1 0.01 770.4
5 MAXCUT/dimacs_mod 0.01 695.9 1.2 0.01 701.9
6 PSEUDO/garden 0.01 496 1 0.01 496
7 PSEUDO/logic-synthesis 0.01 152.2 1 0.01 152.2
8 PSEUDO/primes 0.18 368.4 1 0.19 368.4
9 PSEUDO/routing 3.12 58.7 1 3.12 58.7

10 MAXONE/structured 0.12 240.5 7.4 0.13 249.8
11 MAXCLIQUE/structured 0.06 430.4 1 0.06 430.4

Table: CPU time and Quality for finding first (columns T1/Q1) and
optimal (columns Tf/Qf) solution. number of models computed
(column nSols).

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 38

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automated Symbolic Planning
Soft Goals
Plan quality

Outline

1 Propositional Satisfiability (SAT)

2 Preferences
Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

3 Planning as satisfiability
Automated Symbolic Planning
Soft Goals
Plan quality

4 Automatic Test Generation
Automatic Test Generation with CBMC
Experimental Analysis

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 39

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automated Symbolic Planning
Soft Goals
Plan quality

Outline

1 Propositional Satisfiability (SAT)

2 Preferences
Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

3 Planning as satisfiability
Automated Symbolic Planning
Soft Goals
Plan quality

4 Automatic Test Generation
Automatic Test Generation with CBMC
Experimental Analysis

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 40

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automated Symbolic Planning
Soft Goals
Plan quality

Planning Problem

States & actions
Let F and A be the set of fluents and actions resp.

A state is an assignment over the fluent signature
An action is an assignment over the action signature

Planning problem

A planning problem is a triple 〈I, tr ,G〉 where
I is a formula over F : the set of initial states
tr is a formula over F ∪ A ∪ F ′: the transition relation
G is a Boolean formula over F : the set of goal states

The classical problem is: Is there a sequence of transitions
leading from I to G?

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 41

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automated Symbolic Planning
Soft Goals
Plan quality

Planning Problem

States & actions
Let F and A be the set of fluents and actions resp.

A state is an assignment over the fluent signature
An action is an assignment over the action signature

Planning problem

A planning problem is a triple 〈I, tr ,G〉 where
I is a formula over F : the set of initial states
tr is a formula over F ∪ A ∪ F ′: the transition relation
G is a Boolean formula over F : the set of goal states

The classical problem is: Is there a sequence of transitions
leading from I to G?

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 41

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automated Symbolic Planning
Soft Goals
Plan quality

Assumptions

1 Propositional setting: no metric quantities (resources,
duration)

2 A planning problem can be expressed in your favourite
formalism (STRIPS, ADL, C, . . .)

3 A planning problem corresponds to a symbolic reachability
problem

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 42

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automated Symbolic Planning
Soft Goals
Plan quality

Example: STRIPS

In STRIPS, 〈I, tr ,G〉 is such that:
I is specified as a set of fluents IS:

I = ∧F∈IS F ∧ ∧F 6∈IS¬F

G is specified as a set of fluents GS:

G = ∧F∈GS
F ∧ ∧F 6∈GS

¬F

tr is specified by giving, for each action a, the three sets
Pre(a), Add(a) and Del(a)

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 43

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automated Symbolic Planning
Soft Goals
Plan quality

STRIPS Example

Drive(SL,GE):
Pre: At(SL)
Add: At(GE)
Del: At(SL)

Fly(GE,MI):
Pre: At(GE)
Add: At(MI)
Del: At(GE)

Drive(GE,MI):
Pre: At(GE)
Add: At(MI)
Del: At(GE)

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 44

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automated Symbolic Planning
Soft Goals
Plan quality

Encoding STRIPS descriptions in SAT

Let i be an integer.
1 If an action is executed at time i , its preconditions are

satisfied, e.g.,

Drivei(SL,GE) ⊃ Ati(SL)

2 If an action is executed at time i , its effects hold at time
i + 1, e.g.,

Drivei(SL,GE) ⊃ ¬Ati+1(SL) ∧ Ati+1(GE)

3 Changes occur only because of action, e.g.,

Ati+1(MI) ∧ ¬Ati(MI) ⊃ Flyi(GE ,MI) ∨ Drivei(GE ,MI)
4 It is not possible to execute two conflicting actions at the

same time, e.g.,

¬(Drivei(SL,GE) ∧ Drivei(GE ,MI))
Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 45

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automated Symbolic Planning
Soft Goals
Plan quality

Classical Planning as Satisfiability

Assumptions
1 〈I, tr ,G〉 is a deterministic planning problem:

1 there is only one state satisfying I
2 for each state s and complex action a there is at most one

state s′ satisfying tr

Planning problem (of length n)

A planning problem (of length n) is the Boolean formula

I0 ∧ ∧n
i=1tri ∧Gn

Plan (of length n)

Given a planning problem ϕ of length n, a plan (of length n) is
an assignment satisfying ϕ.

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 46

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automated Symbolic Planning
Soft Goals
Plan quality

Classical Planning with (hard) Constraints

Example (State (Qualification) Constraints)
It is not possible to be in two locations at the same time. Just
add to ϕ:

∧n
i=0¬(Ati(GE) ∧ Ati(SL))

Example (Trajectory Constraints on Action Variables)
I do want to drive after flying. Just add to ϕ:

∧n−1
i=0 ¬(Flyi(MI,GE) ∧ Drivei+1(GE ,SL))

[Kautz, Selman 1996], [Biere, et al. 1999], [Latvala, et al. 2004]

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 47

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automated Symbolic Planning
Soft Goals
Plan quality

Classical Planning with (hard) Constraints

Example (State (Qualification) Constraints)
It is not possible to be in two locations at the same time. Just
add to ϕ:

∧n
i=0¬(Ati(GE) ∧ Ati(SL))

Example (Trajectory Constraints on Action Variables)
I do want to drive after flying. Just add to ϕ:

∧n−1
i=0 ¬(Flyi(MI,GE) ∧ Drivei+1(GE ,SL))

[Kautz, Selman 1996], [Biere, et al. 1999], [Latvala, et al. 2004]

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 47

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automated Symbolic Planning
Soft Goals
Plan quality

Classical Planning with (hard) Constraints

Example (State (Qualification) Constraints)
It is not possible to be in two locations at the same time. Just
add to ϕ:

∧n
i=0¬(Ati(GE) ∧ Ati(SL))

Example (Trajectory Constraints on Action Variables)
I do want to drive after flying. Just add to ϕ:

∧n−1
i=0 ¬(Flyi(MI,GE) ∧ Drivei+1(GE ,SL))

[Kautz, Selman 1996], [Biere, et al. 1999], [Latvala, et al. 2004]

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 47

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automated Symbolic Planning
Soft Goals
Plan quality

Outline

1 Propositional Satisfiability (SAT)

2 Preferences
Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

3 Planning as satisfiability
Automated Symbolic Planning
Soft Goals
Plan quality

4 Automatic Test Generation
Automatic Test Generation with CBMC
Experimental Analysis

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 48

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automated Symbolic Planning
Soft Goals
Plan quality

“Soft” goals

Example
Over than satisfying the goal, I have the additional “soft goal”
that I have to be in Genova before time 3.
My preference is:

At0(GE) ∨ At1(GE) ∨ At2(GE)

Simple preference among goals
1 〈I, tr ,G〉 is a planning problem
2 S is a set of “soft” goals.
3 Consider I0 ∧ ∧n

i=1tri ∧Gn ∧g∈S (vn(g) ≡ gn) together with
the simple preference {vn(g) : g ∈ S}.

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 49

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automated Symbolic Planning
Soft Goals
Plan quality

Simple preference among goals: # of unsatisfied goals

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 50

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automated Symbolic Planning
Soft Goals
Plan quality

Simple preference among goals: CPU times

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 51

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automated Symbolic Planning
Soft Goals
Plan quality

Outline

1 Propositional Satisfiability (SAT)

2 Preferences
Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

3 Planning as satisfiability
Automated Symbolic Planning
Soft Goals
Plan quality

4 Automatic Test Generation
Automatic Test Generation with CBMC
Experimental Analysis

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 52

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automated Symbolic Planning
Soft Goals
Plan quality

Preferences on the actions

Example

Considering the goal At2(MI), I want to perform as few actions
as possible. Further, it is more important not to take the plain
than not taking the car.
My preferences are {¬Drive1(GE ,MI),¬Plain1(GE ,MI)} with
¬Plain1(GE ,MI) ≺ ¬Drive1(GE ,MI).

Irredundant plans
1 I want to perform irredundant plans, i.e., plans s.t. there no

exists another plan requiring the execution of a subset of
the actions.

2 Consider I0 ∧ ∧n
i=1tri ∧Gn together with the preference

{¬ai : a is an action}.

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 53

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automated Symbolic Planning
Soft Goals
Plan quality

Irredundant plans: #actions

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 54

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automated Symbolic Planning
Soft Goals
Plan quality

Irredundant plans: CPU times

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 55

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automatic Test Generation with CBMC
Experimental Analysis

Outline

1 Propositional Satisfiability (SAT)

2 Preferences
Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

3 Planning as satisfiability
Automated Symbolic Planning
Soft Goals
Plan quality

4 Automatic Test Generation
Automatic Test Generation with CBMC
Experimental Analysis

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 56

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automatic Test Generation with CBMC
Experimental Analysis

Outline

1 Propositional Satisfiability (SAT)

2 Preferences
Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

3 Planning as satisfiability
Automated Symbolic Planning
Soft Goals
Plan quality

4 Automatic Test Generation
Automatic Test Generation with CBMC
Experimental Analysis

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 57

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automatic Test Generation with CBMC
Experimental Analysis

CBMC

CBMC is a bounded model checker that formally verifies ANSI-C programs.
The properties checked include

pointer safety,

array bounds

user-provided assertions

The information about the program and the properties to be verified are
translated into obtain a Boolean formula that is checked by a SAT procedure.

If the formula is satisfiable (meaning a property has been violated), CBMC
generates a counterexample (an error trace) for the property violated

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 58

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automatic Test Generation with CBMC
Experimental Analysis

CBMC

CBMC is a bounded model checker that formally verifies ANSI-C programs.
The properties checked include

pointer safety,

array bounds

user-provided assertions

The information about the program and the properties to be verified are
translated into obtain a Boolean formula that is checked by a SAT procedure.

If the formula is satisfiable (meaning a property has been violated), CBMC
generates a counterexample (an error trace) for the property violated

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 58

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automatic Test Generation with CBMC
Experimental Analysis

CBMC

CBMC is a bounded model checker that formally verifies ANSI-C programs.
The properties checked include

pointer safety,

array bounds

user-provided assertions

The information about the program and the properties to be verified are
translated into obtain a Boolean formula that is checked by a SAT procedure.

If the formula is satisfiable (meaning a property has been violated), CBMC
generates a counterexample (an error trace) for the property violated

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 58

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automatic Test Generation with CBMC
Experimental Analysis

Test Generation - Setting

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 59

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automatic Test Generation with CBMC
Experimental Analysis

Test Generation - Setting

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 60

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automatic Test Generation with CBMC
Experimental Analysis

Test Generation - Setting

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 61

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automatic Test Generation with CBMC
Experimental Analysis

Test Generation - Setting

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 62

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automatic Test Generation with CBMC
Experimental Analysis

Test Generation - Setting

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 63

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automatic Test Generation with CBMC
Experimental Analysis

Test Generation - Setting

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 64

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automatic Test Generation with CBMC
Experimental Analysis

Test Generation - Coverage

Branch Coverage

Branch coverage requires every possible outcome of every
decision of the program to be tested at least once by a test in
the set.

Applications
In many safety critical applications, a test set with 100%
coverage has to be provided along with the code.

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 65

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automatic Test Generation with CBMC
Experimental Analysis

ATG for coverage analysis via user assertion

To cover all blocks

Add an assert(0) statement at the end
of a block of instructions.

Run Cbmc.

If the assert is reached Cbmc generates
an error trace.

Repeat for each block in the program.

Use the informations from the error trace to
generate the test set.

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 66

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automatic Test Generation with CBMC
Experimental Analysis

ATG for Coverage Analysis using CBMC

Three main phases
Code instrumentation
Test Generation
Coverage Analysis

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 67

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automatic Test Generation with CBMC
Experimental Analysis

Code instrumentation

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 68

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automatic Test Generation with CBMC
Experimental Analysis

Code instrumentation

int MAIN(int argc, char ∗ argv [])

int FUT(int a)
s0 int r = i = 0
b0, b1 while i < max do
s1 g + +
b2 if i > 0 then
s2 a + +
b4, b5 if a 6= 0 then
s3 r = r + (g+2)

a
b3 else
s4 r = r + g + i
s5 i + +
s6 r = r ∗ 2
s7 return r

int FUT(int a)
ASSERT_1

s0 int r = i = 0
b0, b1 while i < max do

ASSERT_2
s1 g + +
b2 if i > 0 then

ASSERT_3
s2 a + +
b4 if a 6= 0 then

ASSERT_4
s3 r = r + (g+2)

a
b5 else

ASSERT_5
b3 else

ASSERT_6
s4 r = r + g + i
s5 i + +

ASSERT_7
s6 r = r ∗ 2
s7 return r

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 69

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automatic Test Generation with CBMC
Experimental Analysis

Code instrumentation

int MAIN(int argc, char ∗ argv [])

int FUT(int a)
s0 int r = i = 0
b0, b1 while i < max do
s1 g + +
b2 if i > 0 then
s2 a + +
b4, b5 if a 6= 0 then
s3 r = r + (g+2)

a
b3 else
s4 r = r + g + i
s5 i + +
s6 r = r ∗ 2
s7 return r

int FUT(int a)
ASSERT_1

s0 int r = i = 0
b0, b1 while i < max do

ASSERT_2
s1 g + +
b2 if i > 0 then

ASSERT_3
s2 a + +
b4 if a 6= 0 then

ASSERT_4
s3 r = r + (g+2)

a
b5 else

ASSERT_5
b3 else

ASSERT_6
s4 r = r + g + i
s5 i + +

ASSERT_7
s6 r = r ∗ 2
s7 return rEnrico Giunchiglia Satisfiability and Preferences: Theory and Applications 69

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automatic Test Generation with CBMC
Experimental Analysis

Code instrumentation

#ifdef ASSERT_i
assert(0)

endif

int NONDET_INT()

int MAIN(int argc, char ∗ argv [])
max = NONDET_INT()
g = NONDET_INT()
int a = NONDET_INT()
return fut(a)

int FUT(int a)
ASSERT_1

s0 int r = i = 0
b0, b1 while i < max do

ASSERT_2
s1 g + +
b2 if i > 0 then

ASSERT_3
s2 a + +
b4 if a 6= 0 then

ASSERT_4
s3 r = r + (g+2)

a
b5 else

ASSERT_5
b3 else

ASSERT_6
s4 r = r + g + i
s5 i + +

ASSERT_7
s6 r = r ∗ 2
s7 return rEnrico Giunchiglia Satisfiability and Preferences: Theory and Applications 70

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automatic Test Generation with CBMC
Experimental Analysis

Test Generation

Choose a k value as number of iterations for the
non-deterministic loops
Run cbmc n times with n=number of assertions added
Recover from the error trace the informations to generate
the test

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 71

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automatic Test Generation with CBMC
Experimental Analysis

Outline

1 Propositional Satisfiability (SAT)

2 Preferences
Computing one/all optimal solution(s) by guiding search
Computing one/all optimal solution(s) by generate&test
Experimental results

3 Planning as satisfiability
Automated Symbolic Planning
Soft Goals
Plan quality

4 Automatic Test Generation
Automatic Test Generation with CBMC
Experimental Analysis

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 72

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automatic Test Generation with CBMC
Experimental Analysis

Experimental Analysis

We have experimented our methodology on 3 modules of
the European Rail Traffic Management System (ERTMS)
software written by Ansaldo STS.

1000 lines of code with several functions for each module.

Ansaldo STS has estimated that for each test manually
generated are necessary 15 minutes.

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 73

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automatic Test Generation with CBMC
Experimental Analysis

Experimental Analysis

Cbmc Ansaldo STS
function # test time(s) # test time(s)

mod1 19 148 1212 64 57600
mod2 7 47 1444 26 23400
mod3 13 193 6256 80 72000
Total 39 388 8912 170 153000

Both manual and the Automatic Test Generation accomplish the
100% of Branch Coverage

The Generation time for our methodology is an order of
magnitude smaller than the manual generation.

The number of the test automatically generated is more than
double compared to the manual generation

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 74

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automatic Test Generation with CBMC
Experimental Analysis

Experimental Analysis

Cbmc Ansaldo STS
function # test time(s) # test time(s)

mod1 19 148 1212 64 57600
mod2 7 47 1444 26 23400
mod3 13 193 6256 80 72000
Total 39 388 8912 170 153000

Both manual and the Automatic Test Generation accomplish the
100% of Branch Coverage

The Generation time for our methodology is an order of
magnitude smaller than the manual generation.

The number of the test automatically generated is more than
double compared to the manual generation

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 74

Propositional Satisfiability (SAT)
Preferences

Planning as satisfiability
Automatic Test Generation

Automatic Test Generation with CBMC
Experimental Analysis

Experimental Analysis

Cbmc Ansaldo STS
function # test time(s) # test time(s)

mod1 19 148 1212 64 57600
mod2 7 47 1444 26 23400
mod3 13 193 6256 80 72000
Total 39 388 8912 170 153000

Both manual and the Automatic Test Generation accomplish the
100% of Branch Coverage

The Generation time for our methodology is an order of
magnitude smaller than the manual generation.

The number of the test automatically generated is more than
double compared to the manual generation

Enrico Giunchiglia Satisfiability and Preferences: Theory and Applications 74

	Propositional Satisfiability (SAT)
	Preferences
	Computing one/all optimal solution(s) by guiding search
	Computing one/all optimal solution(s) by generate&test
	Experimental results

	Planning as satisfiability
	Automated Symbolic Planning
	Soft Goals
	Plan quality

	Automatic Test Generation
	Automatic Test Generation with CBMC
	Experimental Analysis

