Satisfiability and Preferences: Theory and Applications to Planning and Testing

Enrico Giunchiglia

Laboratory of Systems and Technologies for Automated Reasoning (STAR-Lab) DIST - Univ. Genova Thanks to: E. Di Rosa, M. Maratea, P. Marin, M. Narizzano, A. Puddu ...

4th International Seminar on New Issues in Artificial Intelligence Madrid, Jan. 31st - Feb. 4th 2011

Motivations - 1

Propositional Satisfiability (SAT) is a success story in CS/AI:

- current SAT solvers can determine the satisfiability or unsatisfiability of problems with hundreds of thousands variables, and
- to solve a combinatorial problem P it is often better to translate it to SAT and then apply a SAT solver than using a dedicate solver for P.

Motivations - 2

However.

- In many cases it is not sufficient to determine the satisfiability of a set of constraints,
- E.g., we may want to find models satisfying also as many other constraints as possible (as in MAXSAT) or which minimize a given objective function (as in MINONE),
- These additional preferences, are often independent of the set of constraints and can be partially ranked qualitatively or quantitatively, and
- Introduce a ranking on the models and thus the notion of optimal model.

Goals of the talk

- Introduce a simple formalism for expressing (qualitative) preferences
- Show how it is possible to compute optimal models by slightly modifying existing SAT solvers
- discuss the applicability of the theory to Planning (done) and ATG (work in progress).

Outline

- Preferences
 - Computing one/all optimal solution(s) by guiding search
 - Computing one/all optimal solution(s) by generate&test
 - Experimental results
- Planning as satisfiability
 - Automated Symbolic Planning
 - Soft Goals
 - Plan quality
 - 4 Automatic Test Generation
 - Automatic Test Generation with CBMC
 - Experimental Analysis

Outline

Propositional Satisfiability (SAT)

- Preferences
 - Computing one/all optimal solution(s) by guiding search
 - Computing one/all optimal solution(s) by generate&test
 - Experimental results
- 3 Planning as satisfiability
 - Automated Symbolic Planning
 - Soft Goals
 - Plan quality
- 4 Automatic Test Generation
 - Automatic Test Generation with CBMC
 - Experimental Analysis

< < >> < </>

(二)王

Boolean logic: syntax

Given a set of variables $X = \{x_1, \ldots, x_n\}$ a formula is either:

- a variable $x \in X$
- $\neg \alpha$ where α is a formula
- $(\alpha \circ \beta)$ where α, β are formulas and $\circ \in \{\land, \lor, \supset, \equiv, \oplus\}$

Example

 $\begin{array}{l} (x_1 \wedge \neg x_1) \\ (\neg (x_1 \vee x_2) \equiv (\neg x_1 \wedge \neg x_2)) \\ ((x_1 \oplus x_3) \oplus (x_2 \wedge x_4)) \end{array}$

Absurdity De Morgan's law MSB of a 2-bit adder with inputs x_1x_2 and x_3x_4

Propositional Satisfiability

Formula

- A formula φ is a set $\{C_1, \ldots, C_n\}$ of clauses
- A clause C_i is a set $\{I_1, \ldots, I_m\}$ of literals
- A literal *I* is a variable *x* or the negation \overline{x} of a variable *x*.

Assignment

- An assignment μ is a maximally consistent set of literals
- An assignment μ satisfies (or is a model of) a formula φ if for each C ∈ φ, μ ∩ C ≠ Ø

Propositional Satisfiability

Arbitrary formulas (not necessarily in CNF) and mathematical (linear) expressions with finite range variables can be coded in SAT.

$\{I\}$ is a unit clause

Search algorithm

 $\begin{array}{l} \mathsf{DLL}(\varphi,\mu) \\ 1 \text{ if all clauses are satisfied} \\ \textbf{then return } \mu \\ 2 \text{ if a clause is violated} \\ \textbf{then return } \mathsf{FALSE} \\ 3 \text{ if } \{I\} \text{ is a unit clause in } \varphi \\ \textbf{then return } \mathsf{DLL}(\varphi_l,\mu\cup\{I\}) \\ 4 \ l := a \ literal \ in \ \varphi; \\ \textbf{return } \mathsf{DLL}(\varphi_l,\mu\cup\{I\}) \ \textbf{or} \\ \mathsf{DLL}(\varphi_{\overline{l}},\mu\cup\{\overline{l}\}) \end{array}$

[Davis, Logemann, Loveland 1962]

Key technologies in today's DLL implementations:

- (Lazy) data structures for efficient unit clause detection
- (UIP-based) Learning for backjumping over irrelevant nodes and avoid repeating the same mistakes in different parts of the search tree
- Dynamic heuristics either based on learning or on unit-propagation

イロト イポト イヨト イヨト

minisat has less than 1Kloc

Search algorithm

 $\mathsf{DLL}(\varphi,\mu)$

- 1 if all clauses are satisfied then return μ
- 2 if a clause is violated then return FALSE
- 3 if {*I*} is a unit clause in φ then return DLL($\varphi_{I}, \mu \cup \{I\}$) 4 *I* := a literal in φ ; return DLL($\varphi_{I}, \mu \cup \{I\}$) or

 $\mathsf{DLL}(\varphi_{\overline{l}},\mu\cup\{\overline{l}\})$

[Davis, Logemann, Loveland 1962]

Key technologies in today's DLL implementations:

- (Lazy) data structures for efficient unit clause detection
- (UIP-based) Learning for backjumping over irrelevant nodes and avoid repeating the same mistakes in different parts of the search tree
- Oynamic heuristics either based on learning or on unit-propagation

イロト イポト イヨト イヨ

minisat has less than 1Kloc

Example

Assume we are given $\{\overline{Fish}, \overline{Meat}\}$, DLL will return

- $\{\overline{Fish}, \overline{Meat}\}$ if DLL branches on $\{\overline{Fish}, \overline{Meat}\}$,
- $\{ Fish, Meat \} if DLL branches on \{ Fish \},$
- $\{\overline{Fish}, Meat\}$ if DLL branches on $\{Meat\}$.

However, it may be the case that not all models are equally good. For instance, I may prefer to stay on diet, or I may prefer *Fish* to *Meat*, or viceversa.

Computing one/all optimal solution(s) by guiding search Computing one/all optimal solution(s) by generate&test Experimental results

Outline

Propositional Satisfiability (SAT)

2

Preferences

- Computing one/all optimal solution(s) by guiding search
- Computing one/all optimal solution(s) by generate&test
- Experimental results
- Planning as satisfiability
 - Automated Symbolic Planning
 - Soft Goals
 - Plan quality
- 4 Automatic Test Generation
 - Automatic Test Generation with CBMC
 - Experimental Analysis

Computing one/all optimal solution(s) by guiding search Computing one/all optimal solution(s) by generate&test Experimental results

Qualitative Preferences on Literals - 1

Qualitative Preference on Literals

A preference is a poset S, \prec of literals.

Intuitively:

- S represents the literals that we would like to have satisfied,
- 2 \prec models the relative importance of our preference.

Example

 $S = \{Fish, Meat\}$ with $Fish \prec Meat$, models the fact we like to have Fish and Meat and that we prefer Fish over Meat.

ヘロト ヘアト ヘヨト

Computing one/all optimal solution(s) by guiding search Computing one/all optimal solution(s) by generate&test Experimental results

Qualitative Preferences on Literals - 2

$\mu \prec \mu'$

 μ and μ' are assignments. $\mu\prec\mu'$ if and only if

- **(**) there exists a literal $I \in S$ with $I \in \mu$ and $\overline{I} \in \mu'$; and
- 2 $\forall I \in S \cap (\mu' \setminus \mu), \exists I' \in S \cap (\mu \setminus \mu')$ such that $I' \prec I$.

Example

 $S = \{Fish, Meat\}$ with $Fish \prec Meat$. Then,

 $\{Fish, Meat\} \prec \{Fish, \overline{Meat}\} \prec \{\overline{Fish}, Meat\} \prec \{\overline{Fish}, \overline{Meat}\};$

If φ is (*Fish* \vee *Meat*), the optimal model is {*Fish*, *Meat*}.

э

ヘロト ヘアト ヘビト ヘ

Computing one/all optimal solution(s) by guiding search Computing one/all optimal solution(s) by generate&test Experimental results

Qualitative Preferences on Literals - 2

Advantages:

- Simple,
- Can be generalized to "qualitative preferences on formulas" by introducing "definitions" or "names"
- Can be used to model "quantitative preferences on literals/formulas" by Boolean encoding of the objective function

< < >> < </>

Computing one/all optimal solution(s) by guiding search Computing one/all optimal solution(s) by generate&test Experimental results

Quantitative preferences

- $\langle S, c \rangle$ is a quantitative preference, where S is a set of literals (formulas) and $c : S \mapsto N$.
- 2 The cost of an assignment μ is

$$\sum_{l\in S: \mu\not\models l} c(l).$$

A model (of a given formula) is optimal if it has a minimal associated cost.

A D b 4 A b 4

From quantitative to qualitative preferences

- $\bigcirc \varphi$ is the given formula, and S, c is a quantitative precerence
- adder(S, c) is a Boolean formula corresponding to the cost function
- b_m, \ldots, b_0 is the sequence of variables (bits) representing the value of adder(S, c)

•
$$S'$$
 is the set $\{\overline{b}_m, \ldots, \overline{b}_0\}$ with

$$\mathbf{5} \ \overline{b}_m \prec' \overline{b}_{m-1} \prec' \ldots \prec' \overline{b}_0$$

Fact

A model μ is optimal wrt *S*, *c* iff μ is optimal wrt *S'*, \prec' .

Computing one/all optimal solution(s) by guiding search Computing one/all optimal solution(s) by generate&test Experimental results

Indeed, if our preferences are such that

$$\overline{b}_m \prec' \overline{b}_{m-1} \prec' \ldots \prec' \overline{b}_0$$

then, the set of assignments is ordered as follows:

$$\overline{b}_{m}\overline{b}_{m-1}\dots\overline{b}_{0}\dots \\
\prec'\overline{b}_{m}\overline{b}_{m-1}\dots b_{0}\dots \\
\prec'\dots \\
\prec' b_{m}b_{m-1}\dots b_{0}\dots$$

For instance, if m = 1, we have

4

$$\{\overline{b}_1, \overline{b}_0 \ldots\} \prec' \{\overline{b}_1, b_0 \ldots\} \prec' \{b_1, \overline{b}_0 \ldots\} \prec' \{b_1, b_0 \ldots\}.$$

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Computing one/all optimal solution(s) by guiding search Computing one/all optimal solution(s) by generate&test Experimental results

There are several ways to compute adder(S, c):

Warners 1998 : linear number of clauses (8|S|) and variables (2|S|)

Bailleux & Boufkhad 2003 : quadratic number of clauses

Sinz 2005 : (slightly) improved versions of the previous

э

< □ > < 同 > < 三

Computing one/all optimal solution(s) by guiding search Computing one/all optimal solution(s) by generate&test Experimental results

OPTSAT

 $S, \prec :=$ a qualitative preference on literals; $\psi := \top; \mu_{opt} := \emptyset$

function OPTSAT-R(φ, μ)

- 1 if $(\perp \in (\varphi \cup \psi)_{\mu})$ return FALSE;
- 2 if (μ is total) $\mu_{opt} := \mu$; $\psi := Reason(\mu, S, \prec)$; return FALSE;
- 3 if $(\{l\} \in (\varphi \cup \psi)_{\mu})$ return OPTSAT-R $(\varphi, \mu \cup \{l\})$;
- 4 $I := ChooseLiteral(\varphi \cup \psi, \mu);$
- 5 return OPTSAT-R($\varphi, \mu \cup \{l\}$) or OPTSAT-R($\varphi, \mu \cup \{\overline{l}\}$).

Fact

At the end of computation, μ_{opt} stores an optimal model if φ is satisfiable, and the empty set otherwise.

Computing one/all optimal solution(s) by guiding search Computing one/all optimal solution(s) by generate&test Experimental results

Outline

Propositional Satisfiability (SAT)

- 2
- Preferences
- Computing one/all optimal solution(s) by guiding search
- Computing one/all optimal solution(s) by generate&test
- Experimental results
- 8 Planning as satisfiability
 - Automated Symbolic Planning
 - Soft Goals
 - Plan quality
- 4 Automatic Test Generation
 - Automatic Test Generation with CBMC
 - Experimental Analysis

Computing one/all optimal solution(s) by guiding search Computing one/all optimal solution(s) by generate&test Experimental results

One optimal solution by guiding search (ECAI'06)

Given a set of clauses φ and a qualitative prefence S, \prec , an optimal model can be computed by

- modifying DLL heuristics in order to branch following the partial order on literals:
 - Pros : The first generated model is guaranteed to be optimal
 - Cons : Imposing an order on the heuristic can produce an exponential degradation in the performances (at least in theory).

イロト イポト イヨト イヨト

э

Computing one/all optimal solution(s) by guiding search Computing one/all optimal solution(s) by generate&test Experimental results

Example

Assumptions

• $S = \{Fish, Meat\}$ with $Fish \prec Meat$

In this case, OPTSAT-06 looks for models with

- Fish, Meat.
- Fish, Meat I no such model exists
- Fish, Meat. If no such model exists
- Fish, Meat I f no such model exists
- returns False.

If φ is $(\overline{Fish} \lor \overline{Meat})$ the model returned is $\{\overline{Fish}, \overline{Meat}\}$.

< ロ > < 同 > < 三 >

Computing one/all optimal solution(s) by guiding search Computing one/all optimal solution(s) by generate&test Experimental results

All optimal solutions by guiding search (CP'08)

Given a set of clauses φ and a qualitative prefence S, \prec , all optimal models can be computed by

- modifying DLL heuristics in order to branch following the partial order on literals;
- 2 When an optimal model μ is found, a formula ψ blocking the models dominated by μ is added to φ ;
- search is continued looking for other optimal models.
 - **Pros** : ψ is computed in polynomial time
 - Pros : Only optimal models are generated
 - Cons : Whenever an optimal model is generated, a formula is added to the input one.

э

Computing one/all optimal solution(s) by guiding search Computing one/all optimal solution(s) by generate&test Experimental results

Outline

Propositional Satisfiability (SAT)

2

Preferences

- Computing one/all optimal solution(s) by guiding search
- Computing one/all optimal solution(s) by generate&test
- Experimental results

3 Planning as satisfiability

- Automated Symbolic Planning
- Soft Goals
- Plan quality

4 Automatic Test Generation

- Automatic Test Generation with CBMC
- Experimental Analysis

Computing one/all optimal solution(s) by guiding search Computing one/all optimal solution(s) by generate&test Experimental results

One optimal solution by generate&test (ECAI'08)

Given a set of clauses φ and a qualitative prefence S, \prec , an optimal model can be computed by

- **1** generating a not necessarily optimal model μ of φ ,
- 2 testing if μ is optimal and
 - returning μ if optimal, or
 - **2** adding a formula which forces models $\mu' \prec \mu$ and continuing the search otherwise.
 - Pros : No modifications in the heuristic is needed
 - Cons : It may generate non-optimal models.

э

Computing one/all optimal solution(s) by guiding search Computing one/all optimal solution(s) by generate&test Experimental results

Solving SAT problems with preferences - II

Fact

Let μ and μ' be two total assignments. Let S, \prec be a qualitative preference. μ' is preferred to μ wrt S, \prec if and only if μ' satisfies

$$(\forall_{l:l\in\mathcal{S},l\notin\mu}I) \land (\land_{l':l'\in\mathcal{S},l'\in\mu}(\forall_{l:l\in\mathcal{S},l\notin\mu,l\prec l'}I\lor I')).$$
(1)

Special cases:

- if $S = \emptyset$ or $S \subseteq \mu$, (1) is FALSE, i.e., μ is already optimal;
- if $\prec = \emptyset$, (1) is

 $(\lor_{I:I\in\mathcal{S},I\notin\mu}I)\land(\land_{I:I\in\mathcal{S},I\in\mu}I)$

i.e., for any assignment μ' satisfying (1),

 $S \cap \mu \subset S \cap \mu$

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Computing one/all optimal solution(s) by guiding search Computing one/all optimal solution(s) by generate&test Experimental results

Solving SAT problems with preferences - II

Fact

Let μ and μ' be two total assignments. Let S, \prec be a qualitative preference. μ' is preferred to μ wrt S, \prec if and only if μ' satisfies

$$(\forall_{l:l\in\mathcal{S},l\notin\mu}I) \land (\land_{l':l'\in\mathcal{S},l'\in\mu}(\forall_{l:l\in\mathcal{S},l\notin\mu,l\prec l'}I\lor I')).$$

$$(1)$$

Special cases:

- if $S = \emptyset$ or $S \subseteq \mu$, (1) is FALSE, i.e., μ is already optimal;
- if <= ∅, (1) is

$$(\vee_{I:I\in\mathcal{S},I\notin\mu}I)\wedge(\wedge_{I:I\in\mathcal{S},I\in\mu}I),$$

i.e., for any assignment μ' satisfying (1),

$$\mathcal{S} \cap \mu \subset \mathcal{S} \cap \mu'$$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Computing one/all optimal solution(s) by guiding search Computing one/all optimal solution(s) by generate&test Experimental results

Example

Assumptions

$$\varphi = (\overline{\textit{Fish}} \lor \overline{\textit{Meat}}), S = \{\textit{Fish}, \textit{Meat}\} \text{ and } \textit{Fish} \prec \textit{Meat}$$

In the "worst" case, OPTSAT-08

- finds the model {Fish, Meat}, and then looks for models of (Fish ∨ Meat) ∧ (Fish ∨ Meat);
- If inds the model {Fish, Meat}, and then looks for models of (Fish ∨ Meat) ∧ Fish;
- Inds the model {*Fish*, *Meat*}, and then looks for models of (*Fish* ∨ *Meat*) ∧ *Fish* ∧ *Meat*;
- returns FALSE: the last model found is optimal.

Computing one/all optimal solution(s) by guiding search Computing one/all optimal solution(s) by generate&test Experimental results

All optimal solutions by generate&test

Given a set of clauses φ and a qualitative prefence S, \prec , all optimal models can be computed by

- **9** generating a not necessarily optimal model μ of φ ,
- 2 testing if μ is optimal and
 - printing μ if optimal,
 - 2 learning a formula blocking the assignments $\mu' : \mu \prec \mu'$, and continuing the search.
 - Pros : No modifications in the heuristic is needed
 - Cons : It may generate non-optimal models.

Computing one/all optimal solution(s) by guiding search Computing one/all optimal solution(s) by generate&test Experimental results

Outline

Propositional Satisfiability (SAT)

Preferences

- Computing one/all optimal solution(s) by guiding search
- Computing one/all optimal solution(s) by generate&test

Experimental results

Planning as satisfiability

- Automated Symbolic Planning
- Soft Goals
- Plan quality

4 Automatic Test Generation

- Automatic Test Generation with CBMC
- Experimental Analysis

Computing one/all optimal solution(s) by guiding search Computing one/all optimal solution(s) by generate&test Experimental results

MIN-ONE and MIN-ONEC

Setting

 φ is a formula; ${\it P}$ is the set of variables in $\varphi;\,\mu,\mu'$ total assignments.

MIN-ONE and MIN-ONE ⊆

The goal is to minimize the set of variables set to TRUE. Two possible definitions:

- **Quantitative**, MIN-ONE: $\mu \prec \mu'$ if $|\mu \cap P| < |\mu' \cap P|$.
- **2** Qualitative, MIN-ONE \subseteq : $\mu \prec \mu'$ if $\mu \cap P \subset \mu' \cap P$.

ヘロト ヘアト ヘヨト ヘ

Computing one/all optimal solution(s) by guiding search Computing one/all optimal solution(s) by generate&test Experimental results

Solving MIN-ONE and MIN-ONE_⊂ with preferences

Setting

 φ is a formula; *P* is the set of variables in φ ; $\overline{P} = {\overline{x} : x \in P}$

MIN-ONE⊆

 μ is an optimal model of MIN-ONE_C iff μ is an optimal model wrt the qualitative preference \overline{P}, \emptyset .

MIN-ONE

 μ is an optimal model of MIN-ONE iff μ is an optimal model wrt the quantitative preference \overline{P} , c with c a constant function.

ヘロト ヘヨト ヘヨト

Computing one/all optimal solution(s) by guiding search Computing one/all optimal solution(s) by generate&test Experimental results

MAX-SAT and MAX-SAT

Setting

 φ is a formula; μ, μ' are total assignments.

MAX-SAT and MAX-SAT \subseteq

- In MAX-SAT_C problems, $\mu \prec \mu'$ if the set of clauses satisfied by μ is a superset of the clauses satisfied by μ'
- 2 In MAX-SAT problems, $\mu \prec \mu'$ if the cardinality of the set of clauses satisfied by μ is bigger than the cardinality of the set of the clauses satisfied by μ'

ヘロト ヘアト ヘヨト ヘ

Computing one/all optimal solution(s) by guiding search Computing one/all optimal solution(s) by generate&test Experimental results

From MAX-SAT and MAX-SAT \subseteq to MIN-ONE and MIN-ONE \subseteq

Intuition

- Given a formula φ , a new variable v_i is added to the clause $C_i \in \varphi$, e.g., $\{\{a\}, \{b, c\}\}$ becomes $\{\{a, v_1\}, \{b, c, v_2\}\}$.
- MAX-SAT and MAX-SAT correspond to miniminize the set of variables v_i assigned to 1, and thus reduce (with some care) to MIN-ONE and MIN-ONE problems.

<ロト <問 > < 臣 > < 臣 >
Computing one/all optimal solution(s) by guiding search Computing one/all optimal solution(s) by generate&test Experimental results

Experimental results

	class	n	OPTSAT-06	OPTSAT-08	OPTSAT-06	OPTSAT-08
1	Partial MINONE	21	77.99(19)	2.7(21)	74.28(21)	69.89(21)
2	MINONE	26	0.69(26)	0.2(26)	93.24(24)	23.99(25)
3	MAXSAT	35	26.68(34)	11.25(35)	218.86(31)	175.12(31)
4	MAXCUT/spinglass	5	0.01(5)	0.01(5)	7.56(1)	7.52(1)
5	MAXCUT/dimacs_mod	62	0.01(62)	0.01(62)	66.86(4)	21.61(3)
6	PSEUDO/garden	7	0.02(7)	0.01(7)	22.8(5)	36.66(5)
7	PSEUDO/logic-synthesis	17	0.03(17)	0.01(17)	90.36(3)	338.26(3)
8	PSEUDO/primes	148	4.81(130)	0.19(131)	31.8(103)	60.59(109)
9	PSEUDO/routing	15	11.69(15)	3.12(15)	41.49(15)	36.1(15)
10	MAXONE/structured	60	0.96(60)	0.13(60)	293(56)	7.87(58)
11	MAXCLIQUE/structured	62	0.01(62)	0.06(62)	54.14(19)	178.04(23)

Table: Qualitative (cols 4-5) and Quantitative (cols 6-7) preferences

イロト イポト イヨト イヨト

Computing one/all optimal solution(s) by guiding search Computing one/all optimal solution(s) by generate&test Experimental results

Experimental results: considerations

- MIN-ONE/MIN-ONE_⊆ and MAX-SAT/MAX-SAT_⊆ problems involve large set of objects (the whole set of variables and clauses respectively in the formula).
- In many application domains, like planning, the optimization problem involves a few objects, and in these cases we can expect OPTSAT-06 to perform well
- The results for the quantitative case can vary depending on the way the objective function is encoded (e.g, Warners, Boufkhad,...)
- The results for OPTSAT-08 depend on the number of intermediate models generated before finding the optimal

ヘロト ヘヨト ヘヨト

Computing one/all optimal solution(s) by guiding search Computing one/all optimal solution(s) by generate&test Experimental results

Experimental analysis - OPTSAT-06

Enrico Giunchiglia

Satisfiability and Preferences: Theory and Applications

37

Computing one/all optimal solution(s) by guiding search Computing one/all optimal solution(s) by generate&test Experimental results

Experimental results - OPTSAT-08

	class	<i>T</i> ₁	Q_1	<i>n</i> Sols	T _f	Q_{f}
1	Partial MINONE	2.68	45.5	1.5	2.7	44.1
2	MINONE	0.19	751.6	1	0.2	751.6
3	3 MAXSAT		8605.2	20.2	11.25	8847.6
4	MAXCUT/spinglass	0.01	770.4	1	0.01	770.4
5	MAXCUT/dimacs_mod	0.01	695.9	1.2	0.01	701.9
6	PSEUDO/garden	0.01	496	1	0.01	496
7	PSEUDO/logic-synthesis	0.01	152.2	1	0.01	152.2
8	PSEUDO/primes	0.18	368.4	1	0.19	368.4
9	9 PSEUDO/routing		58.7	1	3.12	58.7
10	MAXONE/structured	0.12	240.5	7.4	0.13	249.8
11	MAXCLIQUE/structured	0.06	430.4	1	0.06	430.4

Table: CPU time and Quality for finding first (columns T_1/Q_1) and optimal (columns T_f/Q_f) solution. number of models computed (column *n*Sols).

イロト イポト イヨト イヨ

Automated Symbolic Planning Soft Goals Plan quality

Outline

Propositional Satisfiability (SAT)

- 2 Preferences
 - Computing one/all optimal solution(s) by guiding search
 - Computing one/all optimal solution(s) by generate&test
 - Experimental results

Planning as satisfiability

- Automated Symbolic Planning
- Soft Goals
- Plan quality
- 4 Automatic Test Generation
 - Automatic Test Generation with CBMC
 - Experimental Analysis

(< ∃) < ∃)</p>

Automated Symbolic Planning Soft Goals Plan quality

Outline

Propositional Satisfiability (SAT)

- 2 Preferences
 - Computing one/all optimal solution(s) by guiding search
 - Computing one/all optimal solution(s) by generate&test
 - Experimental results

Planning as satisfiability

- Automated Symbolic Planning
- Soft Goals
- Plan quality

4 Automatic Test Generation

- Automatic Test Generation with CBMC
- Experimental Analysis

< ∃⇒

- ∢ ⊒ →

Automated Symbolic Planning Soft Goals Plan quality

Planning Problem

States & actions

Let *F* and *A* be the set of fluents and actions resp.

- A state is an assignment over the fluent signature
- An action is an assignment over the action signature

Planning problem

A planning problem is a triple $\langle I, tr, G \rangle$ where

- I is a formula over F: the set of initial states
- *tr* is a formula over $F \cup A \cup F'$: the transition relation
- G is a Boolean formula over F: the set of goal states

The classical problem is: Is there a sequence of transitions leading from *I* to *G*?

Automated Symbolic Planning Soft Goals Plan quality

Planning Problem

States & actions

Let *F* and *A* be the set of fluents and actions resp.

- A state is an assignment over the fluent signature
- An action is an assignment over the action signature

Planning problem

A planning problem is a triple $\langle I, tr, G \rangle$ where

- I is a formula over F: the set of initial states
- *tr* is a formula over $F \cup A \cup F'$: the transition relation

• *G* is a Boolean formula over *F*: the set of goal states The classical problem is: Is there a sequence of transitions leading from *I* to *G*?

Automated Symbolic Planning Soft Goals Plan quality

Assumptions

- Propositional setting: no metric quantities (resources, duration)
- A planning problem can be expressed in your favourite formalism (STRIPS, ADL, C, ...)
- A planning problem corresponds to a symbolic reachability problem

イロト イポト イヨト イヨト

Automated Symbolic Planning Soft Goals Plan quality

Example: STRIPS

In STRIPS, $\langle I, tr, G \rangle$ is such that:

• *I* is specified as a set of fluents *I_S*:

$$I = \wedge_{F \in I_S} F \wedge \wedge_{F \notin I_S} \neg F$$

• *G* is specified as a set of fluents *G*_{*S*}:

$$G = \wedge_{F \in G_S} F \wedge \wedge_{F \not\in G_S} \neg F$$

 tr is specified by giving, for each action a, the three sets Pre(a), Add(a) and Del(a)

< 🗇 🕨

Automated Symbolic Planning Soft Goals Plan quality

STRIPS Example

Drive(SL,GE): Pre: At(SL) Add: At(GE) Del: At(SL) Fly(GE,MI): Pre: At(GE) Add: At(MI) Del: At(GE) Drive(GE,MI): Pre: At(GE) Add: At(MI) Del: At(GE)

44

Automated Symbolic Planning Soft Goals Plan quality

Encoding STRIPS descriptions in SAT

Let *i* be an integer.

If an action is executed at time *i*, its preconditions are satisfied, e.g.,

$Drive_i(SL, GE) \supset At_i(SL)$

If an action is executed at time *i*, its effects hold at time *i* + 1, e.g.,

 $\textit{Drive}_i(\textit{SL},\textit{GE}) \supset \neg \textit{At}_{i+1}(\textit{SL}) \land \textit{At}_{i+1}(\textit{GE})$

Ohanges occur only because of action, e.g.,

 $At_{i+1}(MI) \land \neg At_i(MI) \supset Fly_i(GE, MI) \lor Drive_i(GE, MI)$

It is not possible to execute two conflicting actions at the same time, e.g.,

 $\neg(\textit{Drive}_i(\textit{SL},\textit{GE}) \land \textit{Drive}_i(\textit{GE},\textit{MI}))$

Automated Symbolic Planning Soft Goals Plan quality

Classical Planning as Satisfiability

Assumptions

- $\langle I, tr, G \rangle$ is a deterministic planning problem:
 - there is only one state satisfying I
 - If or each state s and complex action a there is at most one state s' satisfying tr

Planning problem (of length n)

A planning problem (of length n) is the Boolean formula

$$I_0 \wedge \wedge_{i=1}^n tr_i \wedge G_n$$

Plan (of length *n*)

Given a planning problem φ of length *n*, a plan (of length *n*) is an assignment satisfying φ .

Automated Symbolic Planning Soft Goals Plan quality

Classical Planning with (hard) Constraints

Example (State (Qualification) Constraints)

It is not possible to be in two locations at the same time. Just add to φ :

 $\wedge_{i=0}^{n} \neg (At_{i}(GE) \land At_{i}(SL))$

Example (Trajectory Constraints on Action Variables)

I do want to drive after flying. Just add to φ :

 $\wedge_{i=0}^{n-1} \neg (Fly_i(MI, GE) \land Drive_{i+1}(GE, SL))$

[Kautz, Selman 1996], [Biere, et al. 1999], [Latvala, et al. 2004]

э

イロト イ理ト イヨト イヨト

Automated Symbolic Planning Soft Goals Plan quality

Classical Planning with (hard) Constraints

Example (State (Qualification) Constraints)

It is not possible to be in two locations at the same time. Just add to $\varphi :$

 $\wedge_{i=0}^{n} \neg (At_i(GE) \land At_i(SL))$

Example (Trajectory Constraints on Action Variables)

I do want to drive after flying. Just add to φ :

 $\wedge_{i=0}^{n-1} \neg (Fly_i(MI, GE) \land Drive_{i+1}(GE, SL))$

[Kautz, Selman 1996], [Biere, et al. 1999], [Latvala, et al. 2004]

Э

ヘロト ヘワト ヘビト ヘビト

Automated Symbolic Planning Soft Goals Plan quality

Classical Planning with (hard) Constraints

Example (State (Qualification) Constraints)

It is not possible to be in two locations at the same time. Just add to $\varphi :$

 $\wedge_{i=0}^{n} \neg (At_i(GE) \land At_i(SL))$

Example (Trajectory Constraints on Action Variables)

I do want to drive after flying. Just add to φ :

 $\wedge_{i=0}^{n-1} \neg (Fly_i(MI, GE) \land Drive_{i+1}(GE, SL))$

[Kautz, Selman 1996], [Biere, et al. 1999], [Latvala, et al. 2004]

э

イロン イ理 とく ヨン イヨン

Automated Symbolic Planning Soft Goals Plan quality

Outline

Propositional Satisfiability (SAT)

- 2 Preferences
 - Computing one/all optimal solution(s) by guiding search
 - Computing one/all optimal solution(s) by generate&test
 - Experimental results

Planning as satisfiability

- Automated Symbolic Planning
- Soft Goals
- Plan quality

4) Automatic Test Generation

- Automatic Test Generation with CBMC
- Experimental Analysis

< ∃⇒

- ∢ ⊒ →

Automated Symbolic Planning Soft Goals Plan quality

"Soft" goals

Example

Over than satisfying the goal, I have the additional "soft goal" that I have to be in Genova before time 3. My preference is:

$$At_0(GE) \lor At_1(GE) \lor At_2(GE)$$

Simple preference among goals

- $\langle I, tr, G \rangle$ is a planning problem
- S is a set of "soft" goals.
- ^③ Consider $I_0 \land \land_{i=1}^n tr_i \land G_n \land_{g \in S} (v_n(g) \equiv g_n)$ together with the simple preference { $v_n(g) : g \in S$ }.

イロト イヨト イヨト

Simple preference among goals: # of unsatisfied goals

Tabella1

#unsatgoals (subset): siege vs. optsat

Enrico Giunchiglia

Satisfiability and Preferences: Theory and Applications

Simple preference among goals: CPU times

Tabella1

CPU Time (subset): siege vs. optsat

51

Automated Symbolic Planning Soft Goals Plan quality

Outline

Propositional Satisfiability (SAT)

- 2 Preferences
 - Computing one/all optimal solution(s) by guiding search
 - Computing one/all optimal solution(s) by generate&test
 - Experimental results

8 Planning as satisfiability

- Automated Symbolic Planning
- Soft Goals
- Plan quality
- Automatic Test Generation
 - Automatic Test Generation with CBMC
 - Experimental Analysis

< ∃⇒

- ∢ ⊒ →

Automated Symbolic Planning Soft Goals Plan quality

Preferences on the actions

Example

Considering the goal $At_2(MI)$, I want to perform as few actions as possible. Further, it is more important not to take the plain than not taking the car. My preferences are { $\neg Drive_1(GE, MI), \neg Plain_1(GE, MI)$ } with $\neg Plain_1(GE, MI) \prec \neg Drive_1(GE, MI)$.

Irredundant plans

- I want to perform irredundant plans, i.e., plans s.t. there no exists another plan requiring the execution of a subset of the actions.
- Consider $l_0 \wedge \wedge_{i=1}^n tr_i \wedge G_n$ together with the preference $\{\neg a_i : a \text{ is an action}\}.$

Automated Symbolic Planning Soft Goals Plan quality

Irredundant plans: #actions

Tabella1

#actions (subset): siege vs. optsat

Enrico Giunchiglia

Automated Symbolic Planning Soft Goals Plan quality

Irredundant plans: CPU times

Tabella1

CPU Time (subset): siege vs. optsat

Enrico Giunchiglia

Automatic Test Generation with CBMC Experimental Analysis

Outline

Propositional Satisfiability (SAT)

- 2 Preferences
 - Computing one/all optimal solution(s) by guiding search
 - Computing one/all optimal solution(s) by generate&test
 - Experimental results
- Planning as satisfiability
 - Automated Symbolic Planning
 - Soft Goals
 - Plan quality

Automatic Test Generation

- Automatic Test Generation with CBMC
- Experimental Analysis

イロト イポト イヨト イヨト

Automatic Test Generation with CBMC Experimental Analysis

Outline

Propositional Satisfiability (SAT)

- 2 Preferences
 - Computing one/all optimal solution(s) by guiding search
 - Computing one/all optimal solution(s) by generate&test
 - Experimental results
- Planning as satisfiability
 - Automated Symbolic Planning
 - Soft Goals
 - Plan quality
 - Automatic Test Generation
 - Automatic Test Generation with CBMC
 - Experimental Analysis

(日)

- (E)

Automatic Test Generation with CBMC Experimental Analysis

CBMC

CBMC is a bounded model checker that formally verifies ANSI-C programs. The properties checked include

- pointer safety,
- array bounds
- user-provided assertions

The information about the program and the properties to be verified are translated into obtain a Boolean formula that is checked by a SAT procedure.

If the formula is satisfiable (meaning a property has been violated), CBMC generates a counterexample (an error trace) for the property violated

イロン イ理 とくほう くほ

Automatic Test Generation with CBMC Experimental Analysis

CBMC

CBMC is a bounded model checker that formally verifies ANSI-C programs. The properties checked include

- pointer safety,
- array bounds
- user-provided assertions

The information about the program and the properties to be verified are translated into obtain a Boolean formula that is checked by a SAT procedure.

If the formula is satisfiable (meaning a property has been violated), CBMC generates a counterexample (an error trace) for the property violated

ヘロト ヘアト ヘビト ヘ

Automatic Test Generation with CBMC Experimental Analysis

CBMC

CBMC is a bounded model checker that formally verifies ANSI-C programs. The properties checked include

- pointer safety,
- array bounds
- user-provided assertions

The information about the program and the properties to be verified are translated into obtain a Boolean formula that is checked by a SAT procedure.

If the formula is satisfiable (meaning a property has been violated), CBMC generates a counterexample (an error trace) for the property violated

(日)

Automatic Test Generation with CBMC Experimental Analysis

Test Generation - Setting

Problem's Requirements

æ

イロト イポト イヨト イヨト

Automatic Test Generation with CBMC Experimental Analysis

Test Generation - Setting

э

イロト イポト イヨト イヨト

Automatic Test Generation with CBMC Experimental Analysis

Test Generation - Setting

э

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

→ E → < E →</p>

Automatic Test Generation with CBMC Experimental Analysis

Test Generation - Setting

э

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

→ E → < E →</p>

Automatic Test Generation with CBMC Experimental Analysis

Test Generation - Setting

э

イロト イポト イヨト イヨト

Automatic Test Generation with CBMC Experimental Analysis

Test Generation - Setting

э

イロト 不得 とくほ とくほとう

Automatic Test Generation with CBMC Experimental Analysis

Test Generation - Coverage

Branch Coverage

Branch coverage requires every possible outcome of every decision of the program to be tested at least once by a test in the set.

Applications

In many safety critical applications, a test set with 100% coverage has to be provided along with the code.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
Automatic Test Generation with CBMC Experimental Analysis

ATG for coverage analysis via user assertion

To cover all blocks

- Add an assert(0) statement at the end of a block of instructions.
- Run Cbmc.
- If the assert is reached Cbmc generates an error trace.
- Repeat for each block in the program.

Use the informations from the error trace to generate the test set.

イロト イポト イヨト イヨト

э

Automatic Test Generation with CBMC Experimental Analysis

ATG for Coverage Analysis using CBMC

Three main phases

- Code instrumentation
- Test Generation
- Coverage Analysis

э

э

Automatic Test Generation with CBMC Experimental Analysis

Code instrumentation

э

イロト イポト イヨト イヨト

Automatic Test Generation with CBMC Experimental Analysis

Code instrumentation

int FUT(*int a*) s₀ *int r* = *i* = 0 b₀, b₁ while *i* < max do s₁ g++b₂ if *i* > 0 then s₂ a++b₄, b₅ if $a \neq 0$ then s₃ $r = r + \frac{(g+2)}{a}$ b₃ else s₄ r = r + g + is₅ *i* + + s₆ r = r * 2s₇ return r

69

Automatic Test Generation with CBMC Experimental Analysis

Code instrumentation

int FUT(int a) int r = i = 0s₀ b_0, b_1 while i < max do s₁ g + + b_2 if i > 0 then $b_4^{s_2}, b_5$ a++ if $a \neq 0$ then $r = r + \frac{(g+2)}{2}$ s₃ b_3 else r = r + g + is4 s5 s6 s7 i + + r = r * 2return r

int FUT(*int a*) **ASSERT 1** int r = i = 0Sn b_0, b_1 while i < max do **ASSERT 2** g + +s₁ if i > 0 then b_2 ASSERT_3 a + +s₂ b₄ if $a \neq 0$ then **ASSERT 4** $r = r + \frac{(g+2)}{2}$ sз b5 else **ASSERT 5** b_3 else **ASSERT 6** r = r + g + i*s*₄ *s*5 i + +**ASSERT** 7 r = r * 2SG

Automatic Test Generation with CBMC

Code instrumentation

```
#ifdef ASSERT i
  assert(0)
# endif
int NONDET INT()
int MAIN(int argc, char * argv[])
    max = NONDET INT()
    g = NONDET_INT()
    int a = NONDET INT()
    return fut(a)
```

int FU	т(<i>int a</i>)
	ASSERT_1
s ₀	int $r = i = 0$
b_0, b_1	while <i>i</i> < max do
• •	ASSERT_2
s ₁	g + +
b_2	if $i > 0$ then
	ASSERT_3
S2	a++
b ₄	if $a \neq 0$ then
	ASSERT_4
Sz	$r = r + \frac{(g+2)}{2}$
b ₅	else
Ũ	ASSERT 5
b_2	else
~3	ASSERT 6
s.	r = r + a + i
⁵ 4	i _ i _ j
s5	
	ASSERI_/
s ₆	r = r * 2

Automatic Test Generation with CBMC Experimental Analysis

Test Generation

- Choose a k value as number of iterations for the non-deterministic loops
- Run cbmc n times with n=number of assertions added
- Recover from the error trace the informations to generate the test

э

イロト イ理ト イヨト イヨト

Automatic Test Generation with CBMC Experimental Analysis

Outline

Propositional Satisfiability (SAT)

- 2 Preferences
 - Computing one/all optimal solution(s) by guiding search
 - Computing one/all optimal solution(s) by generate&test
 - Experimental results
- Planning as satisfiability
 - Automated Symbolic Planning
 - Soft Goals
 - Plan quality

4 Automatic Test Generation

- Automatic Test Generation with CBMC
- Experimental Analysis

イロト イポト イヨト イヨト

Automatic Test Generation with CBMC Experimental Analysis

- We have experimented our methodology on 3 modules of the European Rail Traffic Management System (ERTMS) software written by Ansaldo STS.
- 1000 lines of code with several functions for each module.
- Ansaldo STS has estimated that for each test manually generated are necessary 15 minutes.

Automatic Test Generation with CBMC Experimental Analysis

			Cbmc	Ansaldo STS	
	# function	# test	time(s)	# test	time(s)
mod1	19	148	1212	64	57600
mod2	7	47	1444	26	23400
mod3	13	193	6256	80	72000
Total	39	388	8912	170	153000

- Both manual and the Automatic Test Generation accomplish the 100% of Branch Coverage
- The Generation time for our methodology is an order of magnitude smaller than the manual generation.
- The number of the test automatically generated is more than double compared to the manual generation

Automatic Test Generation with CBMC Experimental Analysis

			Cbmc	Ansa	Ansaldo STS	
	# function	# test	time(s)	# test	time(s)	
mod1	19	148	1212	64	57600	
mod2	7	47	1444	26	23400	
mod3	13	193	6256	80	72000	
Total	39	388	8912	170	153000	

- Both manual and the Automatic Test Generation accomplish the 100% of Branch Coverage
- The Generation time for our methodology is an order of magnitude smaller than the manual generation.
- The number of the test automatically generated is more than double compared to the manual generation

Automatic Test Generation with CBMC Experimental Analysis

			Cbmc	Ansaldo STS	
	# function	# test	time(s)	# test	time(s)
mod1	19	148	1212	64	57600
mod2	7	47	1444	26	23400
mod3	13	193	6256	80	72000
Total	39	388	8912	170	153000

- Both manual and the Automatic Test Generation accomplish the 100% of Branch Coverage
- The Generation time for our methodology is an order of magnitude smaller than the manual generation.
- The number of the test automatically generated is more than double compared to the manual generation

