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Motivations

! Last ten years: impressive advance in Boolean reasoning techniques

• extremely efficient solvers [52, 46, 4, 29, 36, 55, 23]

• hard “real-world” problems encoded into SAT (e.g.,

– planning

– model checking

– circuit and software testing

– security & criptanalysis

– reasoning on conceptual models

– bioinformatics

– feature extraction from images

– ...
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Motivations

Application benchmarks submitted to the last SAT competition (2009):

1. Aprove: Term Rewriting systems benchmarks.

2. BioInfo I: Queries to nd the maximal size of a biological behavior

without cycles in discrete genetic networks.

3. BioInfo I I: Evolutionary trees.

4. Bit Verif: Bit precise software verication generated by the SMT solver
Boolector.

5. C32SAT: Software verication generated by the C32SAT satisability
checker for C programs.

6. Crypto: Encode attacks for both the DES and MD5 crypto systems.

7. Diagnosis: 4 dierent encodings of discrete event systems.
3
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Motivations
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Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Limmat 02
Zchaff 02
Berkmin 561 02
Forklift 03
Siege 03
Zchaff 04
SatELite 05
Minisat 2.0 06
Picosat 07
Rsat 07
Minisat 2.1 08
Precosat 09
Glucose 09
Clasp 09
Cryptominisat 10
Lingeling 10

Courtesy by Daniel Le Berre
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Results of the SAT competition/race winners on the SAT 2009 crafted benchmarks, 20mn timeout

Zchaff 02
Berkmin 561 02
Forklift 03
Satzoo 03
Siege 03
Zchaff 04
SatELite 05
Minisat 2.0 06
Picosat 07
March KS 07
Minisat 2.1 08
Precosat 09
Glucose 09
Clasp 09
Cryptominisat 10
Lingeling 10

Courtesy by Daniel Le Berre
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Content

⇒ Basics on SAT . . . . . . . . . . . . . . . . . . . . . . . .

• NNF, CNF and conversions . . . . . . . . . . . . . . . . .

• Basic SAT techniques . . . . . . . . . . . . . . . . . . . .

• Modern SAT Solvers . . . . . . . . . . . . . . . . . . . . .

• Advanced Functionalities: proofs, unsat cores, interpolants
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Basic notation & definitions

! Boolean formula

• ",⊥ are formulas

• A propositional atom A1, A2, A3, ... is a formula;

• if ϕ1 and ϕ2 are formulas, then ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 → ϕ2,

ϕ1 ↔ ϕ2 are formulas.

! Literal: a propositional atom Ai (positive literal) or its negation ¬Ai

(negative literal)

! N.B.: if l := ¬Ai, then ¬l := Ai

! Atoms(ϕ): the set {A1, ..., AN} of atoms occurring in ϕ.

! a Boolean formula can be represented as a tree or as a DAG
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TREE and DAG representation of formulas: example

(A1 ↔ A2)↔ (A3 ↔ A4)

⇓
(((A1 ↔ A2)→ (A3 ↔ A4))∧
((A3 ↔ A4)→ (A1 ↔ A2)))

⇓
(((A1 → A2) ∧ (A2 → A1))→ ((A3 → A4) ∧ (A4 → A3)))∧
(((A3 → A4) ∧ (A4 → A3))→ (((A1 → A2) ∧ (A2 → A1))))
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TREE and DAG representation of formulas: example (cont)

A1 A2 A1A2 A3 A3A4 A4 A3 A3A4 A4 A1 A2 A1A2

A1 A2 A3 A4

Tree Representation

DAG Representation
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Basic notation & definitions (cont)

! Total truth assignment µ for ϕ:

µ : Atoms(ϕ) )−→ {",⊥}.
! Partial Truth assignment µ for ϕ:

µ : A )−→ {",⊥}, A ⊂ Atoms(ϕ).

! Set and formula representation of an assignment:

• µ can be represented as a set of literals:

EX: {µ(A1) := ", µ(A2) := ⊥} =⇒ {A1,¬A2}
• µ can be represented as a formula:

EX: {µ(A1) := ", µ(A2) := ⊥} =⇒ A1 ∧ ¬A2
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Basic notation & definitions (cont)

ϕ1 ϕ2 ¬ϕ1 ϕ1 ∧ ϕ2 ϕ1 ∨ ϕ2 ϕ1 → ϕ2 ϕ1 ↔ ϕ2

⊥ ⊥ " ⊥ ⊥ " "
⊥ " " ⊥ " " ⊥
" ⊥ ⊥ ⊥ " ⊥ ⊥
" " ⊥ " " " "

N.B.:

ϕ1 ∨ ϕ2 := ¬(¬ϕ1 ∧ ¬ϕ2),

ϕ1 → ϕ2 := (¬ϕ1 ∨ ϕ2),

ϕ1 ↔ ϕ2 := (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1).
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Basic notation & definitions (cont)

! µ |= ϕ (µ satisfies ϕ):

• µ |= Ai ⇐⇒ µ(Ai) = "
• µ |= ¬ϕ⇐⇒ not µ |= ϕ

• µ |= ϕ1 ∧ ϕ2 ⇐⇒ µ |= ϕ1 and µ |= ϕ2

• µ |= ϕ1 ∨ ϕ2 ⇐⇒ µ |= ϕ1 or µ |= ϕ2

• µ |= ϕ1 → ϕ2 ⇐⇒ if µ |= ϕ1, then µ |= ϕ2

• µ |= ϕ1 ↔ ϕ2 ⇐⇒ µ |= ϕ1 iff µ |= ϕ2

! ϕ is satisfiable iff µ |= ϕ for some µ

! ϕ1 |= ϕ2 (ϕ1 entails ϕ2):

ϕ1 |= ϕ2 iff for every µ µ |= ϕ1 =⇒ µ |= ϕ2

! |= ϕ (ϕ is valid):

|= ϕ iff for every µ µ |= ϕ

! ϕ is valid ⇐⇒ ¬ϕ is not satisfiable
12
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Equivalence and equi-satisfiability

! ϕ1 and ϕ2 are equivalent iff, for every µ,

µ |= ϕ1 iff µ |= ϕ2

! ϕ1 and ϕ2 are equi-satisfiable iff

exists µ1 s.t. µ1 |= ϕ1 iff exists µ2 s.t. µ2 |= ϕ2

! ϕ1, ϕ2 equivalent

⇓ -⇑
ϕ1, ϕ2 equi-satisfiable

! EX: ϕ1 ∨ ϕ2 and (ϕ1 ∨ ¬A3) ∧ (A3 ∨ ϕ2) are in general equi-satisfiable

but not equivalent.
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Complexity

! For N variables, there are up to 2N truth assignments to be checked.

! The problem of deciding the satisfiability of a propositional formula is

NP-complete [10].

! The most important logical problems (validity, inference, entailment,

equivalence, ...) can be straightforwardly reduced to satisfiability, and

are thus (co)NP-complete.

⇓

No existing worst-case-polynomial algorithm.
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Negative normal form (NNF)

! ϕ is in Negative normal form iff it is given only by applications of ∧,∨
to literals.

! every ϕ can be reduced into NNF:

1. substituting all →’s and ↔’s:

ϕ1 → ϕ2 =⇒ ¬ϕ1 ∨ ϕ2

ϕ1 ↔ ϕ2 =⇒ (¬ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ¬ϕ2)

2. pushing down negations recursively:

¬(ϕ1 ∧ ϕ2) =⇒ ¬ϕ1 ∨ ¬ϕ2

¬(ϕ1 ∨ ϕ2) =⇒ ¬ϕ1 ∧ ¬ϕ2

¬¬ϕ1 =⇒ ϕ1

! Preserves the equivalence of formulas.
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NNF: example

(A1 ↔ A2)↔ (A3 ↔ A4)

⇓
((((A1 → A2) ∧ (A1 ← A2))→ ((A3 → A4) ∧ (A3 ← A4)))∧
(((A1 → A2) ∧ (A1 ← A2))← ((A3 → A4) ∧ (A3 ← A4))))

⇓
((¬((¬A1 ∨ A2) ∧ (A1 ∨ ¬A2)) ∨ ((¬A3 ∨ A4) ∧ (A3 ∨ ¬A4)))∧
(((¬A1 ∨A2) ∧ (A1 ∨ ¬A2)) ∨ ¬((¬A3 ∨ A4) ∧ (A3 ∨ ¬A4))))

⇓
((((A1 ∧ ¬A2) ∨ (¬A1 ∧ A2)) ∨ ((¬A3 ∨ A4) ∧ (A3 ∨ ¬A4)))∧
(((¬A1 ∨ A2) ∧ (A1 ∨ ¬A2)) ∨ ((A3 ∧ ¬A4) ∨ (¬A3 ∧ A4))))
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NNF: example (cont)

A1 !A2 !A1 A2 !A3 A4 A3 !A4 !A1 A2 A1 !A2 !A3!A4A3 A4

!B1 B2 B1 !B2

A1 !A2 !A1 A2 !A3 A4 A3 !A4

!B1 B2 B1 !B2

Tree Representation

DAG Representation

N.B. For each non-literal subformula ϕ, ϕ and ¬ϕ have different

representations =⇒they are not shared.
18



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Optimized polynomial representations

Reduced Boolean Circuits [1], Boolean Expression Diagrams [51].

! Maximize the sharing in DAG representations:
{∧,↔,¬}-only, negations on arcs, sorting of subformulae, lifting of ¬’s

over ↔’s,...
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Conjunctive Normal Form (CNF)

! ϕ is in Conjunctive normal form iff it is a conjunction of disjunctions of

literals:
L∧

i=1

Ki∨

ji=1

lji

! the disjunctions of literals
∨Ki

ji=1 lji are called clauses

! Easier to handle: list of lists of literals.

=⇒ no reasoning on the recursive structure of the formula

20
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Classic CNF Conversion CNF (ϕ)

! Every ϕ can be reduced into CNF by, e.g.,

1. converting it into NNF;

2. applying recursively the DeMorgan’s Rule:

(ϕ1 ∧ ϕ2) ∨ ϕ3 =⇒ (ϕ1 ∨ ϕ3) ∧ (ϕ2 ∨ ϕ3)

! Worst-case exponential.

! Atoms(CNF (ϕ)) = Atoms(ϕ).

! CNF (ϕ) is equivalent to ϕ.

! Rarely used in practice.
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Labeling CNF conversion CNFlabel(ϕ) [39, 13]

! Every ϕ can be reduced into CNF by, e.g., applying recursively

bottom-up the rules:

ϕ =⇒ ϕ[(li ∨ lj)|B] ∧ CNF (B ↔ (li ∨ lj))

ϕ =⇒ ϕ[(li ∧ lj)|B] ∧ CNF (B ↔ (li ∧ lj))

ϕ =⇒ ϕ[(li ↔ lj)|B] ∧ CNF (B ↔ (li ↔ lj))

li, lj being literals and B being a “new” variable.

! Worst-case linear.

! Atoms(CNFlabel(ϕ)) ⊇ Atoms(ϕ).

! CNFlabel(ϕ) is equi-satisfiable w.r.t. ϕ.

! Non-normal.

! More used in practice.
22
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Labeling CNF conversion CNFlabel(ϕ) (cont.)

CNF (B ↔ (li ∨ lj)) ⇐⇒ (¬B ∨ li ∨ lj)∧
(B ∨ ¬li)∧
(B ∨ ¬lj)

CNF (B ↔ (li ∧ lj)) ⇐⇒ (¬B ∨ li)∧
(¬B ∨ lj)∧
(B ∨ ¬li¬lj)

CNF (B ↔ (li ↔ lj)) ⇐⇒ (¬B ∨ ¬li ∨ lj)∧
(¬B ∨ li ∨ ¬lj)

(B ∨ li ∨ lj)

(B ∨ ¬li ∨ ¬lj)

23
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Labeling CNF conversion CNFlabel – example

!A3 !A4 A4 A3!A3 A4 !A4A1 A5 A2 !A6 A1 !A5 !A2 A6 A1

B1 B2 B3 B4 B5 B6 B7 B8

B9 B10 B11 B12

B13 B14

B15

CNF (B1 ↔ (¬A3 ∨ A1)) ∧
... ∧
CNF (B8 ↔ (A1 ∨ ¬A4)) ∧
CNF (B9 ↔ (B1 ↔ B2)) ∧
... ∧
CNF (B12 ↔ (B7 ∧ B8)) ∧
CNF (B13 ↔ (B9 ∨ B10)) ∧
CNF (B14 ↔ (B11 ∨ B12)) ∧
CNF (B15 ↔ (B13 ∧ B14)) ∧
B15

24
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Labeling CNF conversion CNFlabel (improved)

! As in the previous case, applying instead the rules:

ϕ =⇒ ϕ[(li ∨ lj)|B] ∧ CNF (B → (li ∨ lj)) if (li ∨ lj) pos.

ϕ =⇒ ϕ[(li ∨ lj)|B] ∧ CNF ((li ∨ lj)→ B) if (li ∨ lj) neg.

ϕ =⇒ ϕ[(li ∧ lj)|B] ∧ CNF (B → (li ∧ lj)) if (li ∧ lj) pos.

ϕ =⇒ ϕ[(li ∧ lj)|B] ∧ CNF ((li ∧ lj)→ B) if (li ∧ lj) neg.

ϕ =⇒ ϕ[(li ↔ lj)|B] ∧ CNF (B → (li ↔ lj)) if (li ↔ lj) pos.

ϕ =⇒ ϕ[(li ↔ lj)|B] ∧ CNF ((li ↔ lj)→ B) if (li ↔ lj) neg.

! Smaller in size:
CNF (B → (li ∨ lj)) = (¬B ∨ li ∨ lj)

CNF (((li ∨ lj)→ B)) = (¬li ∨B) ∧ (¬lj ∨ B)

25
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Labeling CNF conversion CNFlabel(ϕ) (cont.)

CNF (B → (li ∨ lj)) ⇐⇒ (¬B ∨ li ∨ lj)

CNF (B ← (li ∨ lj)) ⇐⇒ (B ∨ ¬li)∧
(B ∨ ¬lj)

CNF (B → (li ∧ lj)) ⇐⇒ (¬B ∨ li)∧
(¬B ∨ lj)

CNF (B ← (li ∧ lj)) ⇐⇒ (B ∨ ¬li¬lj)

CNF (B → (li ↔ lj)) ⇐⇒ (¬B ∨ ¬li ∨ lj)∧
(¬B ∨ li ∨ ¬lj)

CNF (B ← (li ↔ lj)) ⇐⇒ (B ∨ li ∨ lj)∧
(B ∨ ¬li ∨ ¬lj)

26
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Labeling CNF conversion CNFlabel – example

!A3 !A4 A4 A3!A3 A4 !A4A1 A5 A2 !A6 A1 !A5 !A2 A6 A1

B1 B2 B3 B4 B5 B6 B7 B8

B9 B10 B11 B12

B13 B14

B15

Basic Improved

CNF (B1 ↔ (¬A3 ∨ A1)) ∧
... ∧
CNF (B8 ↔ (A1 ∨ ¬A4)) ∧
CNF (B9 ↔ (B1 ↔ B2)) ∧
... ∧
CNF (B12 ↔ (B7 ∧ B8)) ∧
CNF (B13 ↔ (B9 ∨ B10)) ∧
CNF (B14 ↔ (B11 ∨ B12)) ∧
CNF (B15 ↔ (B13 ∧ B14)) ∧
B15

CNF (B1 ↔ (¬A3 ∨ A1)) ∧
... ∧
CNF (B8 → (A1 ∨ ¬A4)) ∧
CNF (B9 → (B1 ↔ B2)) ∧
... ∧
CNF (B12 → (B7 ∧ B8)) ∧
CNF (B13 → (B9 ∨ B10)) ∧
CNF (B14 → (B11 ∨ B12)) ∧
CNF (B15 → (B13 ∧ B14)) ∧
B15

27
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Labeling CNF conversion CNFlabel – further optimizations

! Do not apply CNFlabel when not necessary:

(e.g., CNFlabel(ϕ1 ∧ ϕ2) =⇒ CNFlabel(ϕ1) ∧ ϕ2,

if ϕ2 already in CNF)

! Apply Demorgan’s rules where it is more effective: [13] (e.g.,

CNFlabel(ϕ1∧(A→ (B∧C))) =⇒ CNFlabel(ϕ1)∧(¬A∨B)∧(¬A∨C)

! exploit the associativity of ∧’s and ∨’s:

... (A1 ∨ (A2 ∨ A3))︸ ︷︷ ︸
B

... =⇒ ...CNF (B ↔ (A1 ∨ A2 ∨ A3))...

! before applying CNFlabel, rewrite the initial formula so that to

maximize the sharing of subformulas (RBC, BED)

! ...

28
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Truth Tables

! Exhaustive evaluation of all subformulas:

ϕ1 ϕ2 ϕ1 ∧ ϕ2 ϕ1 ∨ ϕ2 ϕ1 → ϕ2 ϕ1 ↔ ϕ2

⊥ ⊥ ⊥ ⊥ " "
⊥ " ⊥ " " ⊥
" ⊥ ⊥ " ⊥ ⊥
" " " " " "

! Requires polynomial space.

! Never used in practice

(100 variables ⇒ > 1030 assignment ⇒ > 1012 years assuming the

evaluation of one assignment takes 1ns.)

30
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Resolution [41, 12]

! Search for a refutation of ϕ

! ϕ is represented as a set of clauses

! Applies iteratively the resolution rule to pairs of clauses containing a

conflicting literal, until a false clause is generated or the resolution rule

is no more applicable

! Many different strategies

31
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Resolution Rule

Resolution of a pair of clauses with exactly one incompatible variable:

(

common︷ ︸︸ ︷
l1 ∨ ... ∨ lk ∨

resolvent︷︸︸︷
l ∨

C′

︷ ︸︸ ︷
l′k+1 ∨ ... ∨ l′m ) (

common︷ ︸︸ ︷
l1 ∨ ... ∨ lk ∨

resolvent︷︸︸︷
¬l ∨

C′′

︷ ︸︸ ︷
l′′k+1 ∨ ... ∨ l′′n )

( l1 ∨ ... ∨ lk︸ ︷︷ ︸
common

∨ l′k+1 ∨ ... ∨ l′m︸ ︷︷ ︸
C′

∨ l′′k+1 ∨ ... ∨ l′′n︸ ︷︷ ︸
C′′

)

EXAMPLE:
( A ∨B ∨ C ∨ D ∨ E ) ( A ∨B ∨ ¬C ∨ F )

( A ∨B ∨ D ∨ E ∨ F )

NOTE: many standard inference rules subcases of resolution:

A→ B B → C
A→ C

(Transit.) A A→ B
B

(M. Ponens) ¬B A→ B
¬A

(M. Tollens)

32
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Resolution Rules [12]: unit propagation

! Unit resolution:
Γ′ ∧ (l) ∧ (¬l ∨

∨
i li)

Γ′ ∧ (l) ∧ (
∨

i li)

! Unit subsumption:
Γ′ ∧ (l) ∧ (l ∨

∨
i li)

Γ′ ∧ (l)

Applied before general resolution rule!

33
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Resolution: basic strategy [12]

function Resolution(Γ)

if ⊥ ∈ Γ /* unsat */

then return False;

if (Resolve() is no more applicable to Γ) /* sat */

then return True;

if {a unit clause (l) occurs in Γ} /* unit */

then Γ := Unit Propagate(l, Γ));
return Resolution(Γ)

v := select-variable(Γ); /* resolve */

Γ =Γ ∪
⋃

v∈C′,¬v∈C′′{Resolve(C′, C ′′)/{C′, C ′′}};
return Resolution(Γ)

34
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Resolution: Examples

(A1 ∨A2) (A1 ∨ ¬A2) (¬A1 ∨A2) (¬A1 ∨ ¬A2)

⇓
(A2) (A2 ∨ ¬A2) (¬A2 ∨A2) (¬A2)

⇓
⊥

=⇒UNSAT

35
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Resolution: Examples (cont.)

(A ∨B ∨ C) (B ∨ ¬C ∨ ¬F ) (¬B ∨ E)

⇓
(A ∨ C ∨ E) (¬C ∨ ¬F ∨ E)

⇓
(A ∨ E ∨ ¬F )

=⇒SAT

36
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Resolution: Examples

(A ∨B) (A ∨ ¬B) (¬A ∨ C) (¬A ∨ ¬C)

⇓
(A) (¬A ∨ C) (¬A ∨ ¬C)

⇓
(C) (¬C)

⇓
⊥

=⇒UNSAT

37
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Resolution – summary

! Requires CNF

! Γ may blow up

=⇒ May require exponential space

! Not very much used in Boolean reasoning (unless integrated with DPLL

procedure in recent implementations)

38
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Semantic tableaux [47]

! Search for an assignment satisfying ϕ

! applies recursively elimination rules to the connectives

! If a branch contains Ai and ¬Ai, (ψi and ¬ψ1) for some i, the branch is

closed, otherwise it is open.

! if no rule can be applied to an open branch µ, then µ |= ϕ;

! if all branches are closed, the formula is not satisfiable;

39
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Tableau elimination rules

ϕ1 ∧ ϕ2
ϕ1
ϕ2

¬(ϕ1 ∨ ϕ2)
¬ϕ1¬ϕ2

¬(ϕ1 → ϕ2)
ϕ1¬ϕ2 (∧-elimination)

¬¬ϕ
ϕ (¬¬-elimination)

ϕ1 ∨ ϕ2
ϕ1 ϕ2

¬(ϕ1 ∧ ϕ2)
¬ϕ1 ¬ϕ2

ϕ1 → ϕ2
¬ϕ1 ϕ2 (∨-elimination)

ϕ1 ↔ ϕ2
ϕ1 ¬ϕ1
ϕ2 ¬ϕ2

¬(ϕ1 ↔ ϕ2)
ϕ1 ¬ϕ1¬ϕ2 ϕ2 (↔ -elimination).

40
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Semantic Tableaux – example

ϕ = (A1 ∨A2) ∧ (A1 ∨ ¬A2) ∧ (¬A1 ∨ A2) ∧ (¬A1 ∨ ¬A2)

A1 A2

A1 !A2 !A2A1

!A1 !A1 !A1A2 A2 A2

!A1 !A1!A2 !A2

41
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Tableau algorithm

function Tableau(Γ)
if Ai ∈ Γ and ¬Ai ∈ Γ /* branch closed */

then return False;

if (ϕ1 ∧ ϕ2) ∈ Γ /* ∧-elimination */

then return Tableau(Γ ∪ {ϕ1, ϕ2}\{(ϕ1 ∧ ϕ2)});
if (¬¬ϕ1) ∈ Γ /* ¬¬-elimination */

then return Tableau(Γ ∪ {ϕ1}\{(¬¬ϕ1)});
if (ϕ1 ∨ ϕ2) ∈ Γ /* ∨-elimination */

then return Tableau(Γ ∪ {ϕ1}\{(ϕ1 ∨ ϕ2)}) or
Tableau(Γ ∪ {ϕ2}\{(ϕ1 ∨ ϕ2)});

...

return True; /* branch expanded */
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Semantic Tableaux – summary

! Handles all propositional formulas (CNF not required).

! Branches on disjunctions

! Intuitive, modular, easy to extend

=⇒ loved by logicians.

! Rather inefficient

=⇒ avoided by computer scientists.

! Requires polynomial space
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DPLL [12, 11]

! Davis-Putnam-Longeman-Loveland procedure (DPLL)

! Tries to build an assignment µ satisfying ϕ;

! At each step assigns a truth value to (all instances of) one atom.

! Performs deterministic choices first.
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DPLL rules

ϕ1 ∧ (l)
ϕ1[l|"]

(Unit)

ϕ

ϕ[l|"]
(l Pure)

ϕ

ϕ[l|"] ϕ[l|⊥]
(split)

(l is a pure literal in ϕ iff it occurs only positively).

• Split applied if and only if the others cannot be applied.

• Richer formalisms described in [49, 37]

45



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

DPLL – example

ϕ = (A1 ∨A2) ∧ (A1 ∨ ¬A2) ∧ (¬A1 ∨ A2) ∧ (¬A1 ∨ ¬A2)

A1 !A1

A2 A2
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DPLL Algorithm

function DPLL(ϕ, µ)

if ϕ = " /* base */

then return True;

if ϕ = ⊥ /* backtrack */

then return False;

if {a unit clause (l) occurs in ϕ} /* unit */

then return DPLL(assign(l, ϕ), µ ∧ l);

if {a literal l occurs pure in ϕ} /* pure */

then return DPLL(assign(l, ϕ), µ ∧ l);

l := choose-literal(ϕ); /* split */

return DPLL(assign(l, ϕ), µ ∧ l) or
DPLL(assign(¬l, ϕ), µ ∧ ¬l);
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DPLL – summary

! Handles CNF formulas (non-CNF variant known [2, 22]).

! Branches on truth values

=⇒all instances of an atom assigned simultaneously

! Postpones branching as much as possible.

! Mostly ignored by logicians.

! Probably the most efficient SAT algorithm

=⇒ loved by computer scientists.

! Requires polynomial space

! Choose literal() critical!

! Many very efficient implementations [52, 46, 4, 36].
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Ordered Binary Decision Diagrams (OBDDs) [8]

! “If-then-else” binary DAGs with two leaves: 1 and 0

! Paths leading to 1 represent models

Paths leading to 0 represent counter-models

! Variable ordering A1, A2, ..., An imposed a priori.

49



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

OBDD - Examples

FT

b3

a3

b3

b2

a2

b2

b1b1

a1 a1

a2

a3 a3 a3

a2

a3

b1 b1 b1 b1 b1 b1

b2 b2 b2 b2

b3 b3

b1 b1

T F

OBDDs of (a1 ↔ b1) ∧ (a2 ↔ b2) ∧ (a3 ↔ b3) with different variable

orderings

50



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Ordered Decision Trees

! Ordered Decision Tree: from root to leaves, variables are encountered

always in the same order

! Example: Ordered Decision tree for ϕ = (a ∧ b) ∨ (c ∧ d)

a

b

cc

d d d d dd d

c

d

b

c

0 0 0 0 0 01 1 0 0 0 1 1 1 1 1
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From Ordered Decision Trees to OBDD’s: reductions

! Recursive applications of the following reductions:

• share subnodes: point to the same occurrence of a subtree

• remove redundancies: nodes with same left and right children can be

eliminated
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Reduction: example

a

b

cc

d d d d dd d

c

d

b

c

0 0 0 0 0 01 1 0 0 0 1 1 1 1 1
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Reduction: example [cont.]

Detect redundacies: a

b

cc

d d d d dd d

c

d

b

c

0 0 0 0 0 01 1 0 0 0 1 1 1 1 1
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Reduction: example [cont.]

Remove redundacies: a

b

cc

d d d

c

b

c

0 01 1 0 1

0 0 0 1 1
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Reduction: example [cont.]

Remove redundacies: a

b

cc

d d d

b

c

0 01 1 0 1

0 0 0

1
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Reduction: example [cont.]

Share identical nodes: a

b

cc

d d d

b

c

0 01 1 0 1

0 0 0

1
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Reduction: example [cont.]

Share identical nodes: a

b

c

d

b

0

1
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Reduction: example [cont.]

Detect redundancies: a

b

c

d

b

0

1
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Reduction: example [cont.]

Remove redundancies: 

Final OBDD!

a

c

d

b

0

1
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Recursive structure of an OBDD

! OBDD(", {...}) = 1,

! OBDD(⊥, {...}) = 0,

! OBDD(ϕ, {A1, A2, ..., An}) =

if A1

then OBDD(ϕ[A1|"], {A2, ..., An})
else OBDD(ϕ[A1|⊥], {A2, ..., An})

61



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Incrementally building an OBDD

! obdd build(", {...}) := 1,

! obdd build(⊥, {...}) := 0,

! obdd build((ϕ1 op ϕ2), {A1, ..., An}) :=

reduce(

obdd merge( op,

obdd build(ϕ1, {A1, ..., An}),
obdd build(ϕ2, {A1, ..., An}),
{A1, ..., An}

) )

op ∈ {∧,∨,→,↔}

62



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

OBBD incremental building – example

ϕ = (A1 ∨A2) ∧ (A1 ∨ ¬A2) ∧ (¬A1 ∨ A2) ∧ (¬A1 ∨ ¬A2)

T F

A2

A1

T F

A2

A1

T F

A2

A1

T F

A2

A1

A1

T F

A1

T F

F

(A1 v !A2)(A1 v A2) (!A1 v A2) (!A2 v !A2)

(A1 v A2) ^ (A1 v !A2) (!A1 v A2) ^ (!A1 v !A2)

(A1 v A2) ^ (A1 v !A2) (!A1 v A2) ^ (!A1 v !A2)^
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Critical choice of variable Orderings in OBDD’s

ϕ = (a1← b1) ∧ (a2← b2) ∧ (a3← b3)

True False

a1

b1

a2

b2 b2

a3

b3 b3

b1

b1b1b1b1b1b1b1b1

a3 a3 a3 a3

a2a2

a1

b3 b3

b2b2b2b2

FalseTrue

Linear size Exponential size
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OBDD’s as canonical representation of Boolean formulas

! An OBDD is a canonical representation of a Boolean formula: once the

variable ordering is established, equivalent formulas are represented by

the same OBDD:

ϕ1 ↔ ϕ2 ⇐⇒ OBDD(ϕ1) = OBDD(ϕ2)

! equivalence check requires constant time!

=⇒validity check requires constant time! (ϕ↔ ")

=⇒(un)satisfiability check requires constant time! (ϕ↔ ⊥)

! the set of the paths from the root to 1 represent all the models of the

formula

! the set of the paths from the root to 0 represent all the counter-models

of the formula
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Exponentiality of OBDD’s

! The size of OBDD’s may grow exponentially wrt. the number of

variables in worst-case

! Consequence of the canonicity of OBDD’s (unless P = co-NP)

! Example: there exist no polynomial-size OBDD representing the

electronic circuit of a bitwise multiplier

! N.B.: the size of intermediate OBDD’s may be bigger than that of the

final one (e.g., inconsistent formula)
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Useful Operations over OBDDs

! the equivalence check between two OBDDs is simple

• are they the same OBDD? (=⇒constant time)

! the size of a Boolean composition is up to the product of the size of the

operands: |f op g| = O(|f | · |g|)

f

g

fg

O(|f| |g|)

(but typically much smaller on average).
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Boolean quantification

! If v is a Boolean variable, then

∃v.f := f |v=0 ∨ f |v=1

∀v.f := f |v=0 ∧ f |v=1

! Multi-variable quantification: ∃(w1, . . . , wn).f := ∃w1 . . . ∃wn.f

! Example: ∃(b, c).((a ∧ b) ∨ (c ∧ d)) = a ∨ d

! naive expansion of quantifiers to propositional logic may cause a

blow-up in size of the formulae

! OBDD’s handle very efficiently quantification operations
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OBDD’s and Boolean quantification

! OBDD’s handle quantification operations rather efficiently

• if f is a sub-OBDD labeled by variable v, then f |v=1 and f |v=0 are

the “then” and “else” branches of f

fv=1fv=0

. . . . . .

v

=⇒lots of sharing of subformulae!

69



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

OBDD – summary

! Factorize common parts of the search tree (DAG)

! Require setting a variable ordering a priori (critical!)

! Canonical representation of a Boolean formula.

! Once built, logical operations (satisfiability, validity, equivalence)

immediate.

! Represents all models and counter-models of the formula.

! Require exponential space in worst-case

! Very efficient for some practical problems (circuits, symbolic model

checking).
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Incomplete SAT techniques: GSAT, WSAT [45, 44]

! Hill-Climbing techniques: GSAT, WSAT

! looks for a complete assignment;

! starts from a random assignment;

! Greedy search: looks for a better “neighbor” assignment

! Avoid local minima: restart & random walk
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The GSAT algorithm

function GSAT(ϕ)

for i := 1 to Max-tries do
µ := rand-assign(ϕ);

for j := 1 to Max-flips do
if (score(ϕ, µ) = 0)

then return True;

else Best-flips := hill-climb(ϕ, µ);

Ai := rand-pick(Best-flips);

µ := flip(Ai, µ);

end
end
return “no satisfying assignment found”.
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The WalkSAT algorithm
Slide contributed by the student Silvia Tomasi

WalkSAT(ϕ,MAX-STEPS,MAX-TRIES, select())
1 for i← 1 to MAX-TRIES

2 do µ← a randomly generated truth assignment;

3 for j ← 1 to MAX-STEPS

4 do if µ satisfies ϕ

5 then return µ;
6 else C ← randomly selected clause unsatisfied under µ;
7 x← variable selected from C according to heuristic select();
8 µ← µ with x flipped;

9 return error “no solution found”
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GSAT & WSAT– summary

! Handle only CNF formulas.

! Incomplete

! Extremely efficient for some (satisfiable) problems.

! Require polynomial space

! Non-CNF Variants: NC-GSAT [42], DAG-SAT [43]
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Content

√
Basics on SAT . . . . . . . . . . . . . . . . . . . . . . . .

√
NNF, CNF and conversions . . . . . . . . . . . . . . . . .

√
Basic SAT techniques . . . . . . . . . . . . . . . . . . . .

⇒ Modern SAT Solvers . . . . . . . . . . . . . . . . . . . . .

• Advanced Functionalities: proofs, unsat cores, interpolants
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Variants of DPLL

DPLL is a family of algorithms.

! preprocessing: (subsumption, 2-simplification, resolution)

! different branching heuristics

! backjumping

! learning

! restarts

! (horn relaxation)

! ...
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Modern DPLL implementations [46, 4, 55, 23]

! Non-recursive: stack-based representation of data structures

! Efficient data structures for doing and undoing assignments

! Perform non-chronological backtracking and learning

! May perform search restarts

! Reason on total assignments

Dramatically efficient: solve industrial-derived problems with ≈ 107

Boolean variables and ≈ 107 clauses
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Iterative description of DPLL [46, 55]

Function DPLL (formula: ϕ, assignment & µ) {
status := preprocess(ϕ, µ);
while (1) {

decide next branch(ϕ, µ);
while (1) {

status := deduce(ϕ, µ, η); η is a conflict set
if (status == Sat)

return Sat;
if (status == Conflict) {

blevel := analyze conflict(ϕ, µ, η);
if (blevel == 0)

return Unsat;
else backtrack(blevel,ϕ, µ);

}
else break;

} } }
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Iterative description of DPLL [46, 55]

! preprocess(ϕ, µ) simplifies ϕ into an easier equisatisfiable formula (

and updates µ if it is the case)

! decide next branch(ϕ, µ) chooses a new decision literal from ϕ

according to some heuristic, and adds it to µ

! deduce(ϕ, µ, η) performs all deterministic assignments (unit), and

updates ϕ, µ accordingly. If this causes a conflict, η is the subset of µ

causing the conflict (conflict set).

! analyze conflict(ϕ, µ, η) returns the “wrong-decision” level

suggested by η (“0” means that a conflict exists even without

branching)

! backtrack(blevel,ϕ, µ) undoes the branches up to blevel, and

updates ϕ, µ accordingly
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Techniques to achieve efficiency in DPLL

! Preprocessing: preprocess the input formula so that to make it easier to

solve

! Look-ahead: exploit information about the remaining search space

• unit propagation

• forward checking (branching heuristics)

! Look-back: exploit information about search which has already taken

place

• Backjumping & learning

! Others

• restarts

• ...
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Preprocessing: (sorting plus) subsumption

! Detect and remove subsumed clauses:

ϕ1 ∧ (l2 ∨ l1) ∧ ϕ2 ∧ (l2 ∨ l3 ∨ l1) ∧ ϕ3

⇓
ϕ1 ∧ (l1 ∨ l2) ∧ ϕ2 ∧ ϕ3
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Preprocessing: detect & collapse equivalent literals [7]

Repeat:

1. build the implication graph induced by binary clauses

2. detect strongly connected cycles =⇒equivalence classes of literals

3. perform substitutions

4. perform unit and pure literal.

Until (no more simplification is possible).

! Ex:

ϕ1 ∧ (¬l2 ∨ l1) ∧ ϕ2 ∧ (¬l3 ∨ l2) ∧ ϕ3 ∧ (¬l1 ∨ l3) ∧ ϕ4

⇓l1↔l2↔l3

(ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4)[l2 ← l1; l3 ← l1; ]

! Very effective in many application domains.
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Preprocessing: resolution (and subsumption) [3]

! Apply some basic steps of resolution (and simplify):

ϕ1 ∧ (l2 ∨ l1) ∧ ϕ2 ∧ (l2 ∨ ¬l1) ∧ ϕ3

⇓resolve

ϕ1 ∧ (l2) ∧ ϕ2 ∧ ϕ3

⇓unit−propagate

(ϕ1 ∧ ϕ2 ∧ ϕ3)[l2 ← "]
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Branching heuristics

! Branch is the source of non-determinism for DPLL

=⇒critical for efficiency

! many branch heuristics conceived in literature.
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Some example heuristics

! MOMS heuristics: pick the literal occurring most often in the minimal

size clauses

=⇒fast and simple, many variants

! Jeroslow-Wang: choose the literal with maximum

score(l) := Σl∈c & c∈ϕ 2−|c|

=⇒estimates l’s contribution to the satisfiability of ϕ

! Satz [29]: selects a candidate set of literals, perform unit propagation,

chooses the one leading to smaller clause set

=⇒maximizes the effects of unit propagation

! VSIDS [36]: variable state independent decaying sum

• “static”: scores updated only at the end of a branch

• “local”: privileges variable in recently learned clauses
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“Classic” chronological backtracking

! variable assignments (literals) stored in a stack

! each variable assignments labeled as “unit”, “open”, “closed”

! when a conflict is encountered, the stack is popped up to the most

recent open assignment l

! l is toggled, is labeled as “closed”, and the search proceeds.
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Classic chronological backtracking – example (1)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...
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Classic chronological backtracking – example (2)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ...}
(initial assignment)
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Classic chronological backtracking – example (3)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12
√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ..., A1}
... (branch on A1)
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Classic chronological backtracking – example (4)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12
√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ..., A1, A2, A3}
(unit A2, A3)
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Classic chronological backtracking – example (5)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4
√

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12
√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

... A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ..., A1, A2, A3, A4}
(unit A4)
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Classic chronological backtracking – example (6)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4
√

c4 : ¬A4 ∨A5 ∨A10
√

c5 : ¬A4 ∨A6 ∨A11
√

c6 : ¬A5 ∨ ¬A6 ×
c7 : A1 ∨A7 ∨ ¬A12

√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

... A5
A6

A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A1¬A41, A12, A13, ..., A1, A2, A3, A4, A5, A6}
(unit A5, A6)=⇒ conflict
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Classic chronological backtracking – example (7)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...
A5
A6

A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ...}
=⇒backtrack up to A1
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Classic chronological backtracking – example (8)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

¬A1

A5
A6

A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ...,¬A1}
(unit ¬A1)
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Classic chronological backtracking – example (9)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12
√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13 ×
...

A7
A8

¬A1

A5
A6

A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ...,¬A1, A7, A8}
(unit A7, A8) =⇒ conflict
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Classic chronological backtracking – example (10)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

A7
A8

¬A1

A5
A6

A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ...}
=⇒backtrack to the most recent open branching point
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Classic chronological backtracking – example (10)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

A7
A8

¬A1

A5
A6

A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ...}
=⇒lots of useless search before backtracking up to A13!
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Classic chronological backtracking: drawbacks

! often the branch heuristic delays the “right” choice

! chronological backtracking always backtracks to the most recent

branching point, even though a higher backtrack could be possible

=⇒ lots of useless search!
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Conflict-directed backtracking (backjumping) and learning [4, 46]

! General idea: when a branch µ fails,

1. conflict analysis: reveal the sub-assignment η ⊆ µ causing the failure

(conflict set η)

2. learning: add the conflict clause C
def

= ¬η to the clause set

3. backjumping: use η to decide the point where to backtrack

! may jump back up much more than one decision level in the stack

=⇒may avoid lots of redundant search!!.

! we illustrate two main backjumping & learning strategies:

• the original strategy presented in [46]

• the state-of-the-art 1stUIP strategy [54]
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Preliminary: Correspondence between Search trees and Resolution Proofs

In the case of an unsatisfiable formula, the search tree explored by DPLL corresponds

to a (tree) resolution proof of its unsatisfiability.

Given the above, “learning” corresponds to storing intermediate resolution steps

computed during the search.
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Example

(B0∨¬B1∨A1)∧ (B0∨B1∨A2)∧ (¬B0∨B1∨A2)∧ (¬B0 ∨ ¬B1)∧ (¬B2 ∨ ¬B4)∧
(¬A2 ∨B2) ∧ (¬A1 ∨B3) ∧B4 ∧ (A2 ∨B5) ∧ (¬B6 ∨ ¬B4) ∧ (B6 ∨ ¬A1) ∧B7

(B1 ∨ B0 ∨ A2)

(B0 ∨ A1 ∨ A2)

(B0 ∨ ¬B1 ∨ A1)

(B6 ∨ A2) (¬B6 ∨ ¬B4)

(A2 ∨ ¬B4) (¬A2 ∨B2)

(¬B4 ∨B2)

(A1 ∨ A2)(¬A1 ∨ B6)

(¬B2 ∨ ¬B4)

(¬B4)B4

⊥

(¬B0 ∨ ¬B1)

(¬B0 ∨ A2)

(B1 ∨ ¬B0 ∨A2)
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The original backjumping and learning strategy of [46]

! Idea: when a branch µ fails,

1. conflict analysis: find the conflict set η ⊆ µ by generating the

conflict clause C
def

= ¬η via resolution from the falsified clause

(conflicting clause)

2. learning: add the conflict clause C to the clause set

3. backjumping: backtrack to the most recent branching point s.t. the

stack does not fully contain η, and then unit-propagate the

unassigned literal on C
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Construction of a conflict set: implication graph

! An implication graph is a DAG s.t.:

• each node represents a variable assignment (literal)

• each edge li
c)−→ l is labeled with a clause

• the node of a decision literal has no incoming edges

• all edges incoming into a node l are labeled with the same clause c,

s.t. l1
c)−→ l,...,ln

c)−→ l iff c = ¬l1 ∨ ... ∨ ¬ln ∨ l

(c is said to be the antecedent clause of l)

• when both l and ¬l occur in the graph, we have a conflict.

! Intuition:

• the graph contains l1
c)−→ l,...,ln

c)−→ l iff l has been obtained from

l1, ..., ln by unit propagation on c

• a partition of the graph with all decision literals on one side and the

conflict on the other represents a conflict set
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The original backjumping strategy – example [46] (1)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...
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The original backjumping strategy – example (2)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ...}
(initial assignment)
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The original backjumping strategy – example (3)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12
√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

A1

A1

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ..., A1}
... (branch on A1)
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The original backjumping strategy – example (4)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12
√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

A2

A3

c2

c2

c1

A2
A3

A1

A1

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ..., A1, A2, A3}
(unit A2, A3)
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The original backjumping strategy – example (5)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4
√

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12
√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

c3

c3

A4

A4

A2

A3

c2

c2

c1

A2
A3

A1

A1

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ..., A1, A2, A3, A4}
(unit A4)
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The original backjumping strategy – example (6)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4
√

c4 : ¬A4 ∨A5 ∨A10
√

c5 : ¬A4 ∨A6 ∨A11
√

c6 : ¬A5 ∨ ¬A6 ×
c7 : A1 ∨A7 ∨ ¬A12

√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

Conflict!

A5

A6

c4

c6

c6

c5

c4

c5

A5
A6

c3

c3

A4

A4

A2

A3

c2

c2

c1

A2
A3

A1

A1

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A1¬A41, A12, A13, ..., A1, A2, A3, A4, A5, A6}
(unit A5, A6) =⇒ conflict
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The original backjumping strategy – example (7)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4
√

c4 : ¬A4 ∨A5 ∨A10
√

c5 : ¬A4 ∨A6 ∨A11
√

c6 : ¬A5 ∨ ¬A6 ×
c7 : A1 ∨A7 ∨ ¬A12

√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

Conflict!

A5

A6

c4

c6

c6

c5

c4

c5

A5
A6

c3

c3

A4

A4

A2

A3

c2

c2

c1

A2
A3

A1

A1

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

=⇒Conflict set: {¬A9,¬A10,¬A11, A1}
=⇒learn the conflict clause c10 := A9 ∨A10 ∨ A11 ∨ ¬A1
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Implementation of the implication graph

! an implication graph is implemented by tagging each non-decision literal

in the stack with its antecedent clause

! (the partition representing) a conflict set is constructed from the

conflict by traversing backwards the implication graph

! a conflict set can be constructed starting from the conflicting clause,

each time resolving the current clause with the antecedent clause of one

of its literals l

(undo the unit propagation of l)
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Building a conflict set/clause by resolution

1. C := conflicting clause

2. repeat

(a) resolve current clause C with the antecedent clause of the last

unit-propagated literal l in C

until C verifies some given termination criteria

(e.g., until C contains only decision literals)

¬A1 ∨ A2

¬A1 ∨ A3 ∨ A9

¬A2 ∨ ¬A3 ∨ A4

¬A4 ∨ A5 ∨ A10

¬A4 ∨ A6 ∨ A11

Conflicting cl.
︷ ︸︸ ︷
¬A5 ∨ ¬A6

¬A4 ∨ ¬A5 ∨ A11
(A6

¬A4 ∨ A10 ∨ A11
(A5)

¬A2 ∨ ¬A3 ∨ A10 ∨ A11
(A4)

¬A2 ∨ ¬A1 ∨ A9 ∨ A10 ∨ A11
(A3)

¬A1 ∨ A9 ∨ A10 ∨ A11
(A2)
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The original backjumping strategy – example (7)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4
√

c4 : ¬A4 ∨A5 ∨A10
√

c5 : ¬A4 ∨A6 ∨A11
√

c6 : ¬A5 ∨ ¬A6 ×
c7 : A1 ∨A7 ∨ ¬A12

√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

Conflict!

A5

A6

c4

c6

c6

c5

c4

c5

A5
A6

c3

c3

A4

A4

A2

A3

c2

c2

c1

A2
A3

A1

A1

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

=⇒Conflict set: {¬A9,¬A10,¬A11, A1}
=⇒learn the conflict clause c10 := A9 ∨A10 ∨ A11 ∨ ¬A1
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The original backjumping strategy – example (8)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

c10 : A9 ∨A10 ∨A11 ∨ ¬A1

...

A2
A3
A4
A5
A6

¬A9

¬A10

A12

¬A11

¬A10

¬A11

A12

A13

A1

¬A9

A13

{...,¬A9,¬A10,¬A11, A12, A13, ...}
=⇒backtrack up to A1
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The original backjumping strategy – example (9)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

c10 : A9 ∨A10 ∨A11 ∨ ¬A1
√

...

¬A1

c10

c10

c10

¬A1

A2
A3
A4
A5
A6

¬A9

¬A10

A12

¬A11

¬A10

¬A11

A12

A13

A1

¬A9

A13

{...,¬A9,¬A10,¬A11, A12, A13, ...,¬A1}
(unit ¬A1)
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The original backjumping strategy – example (10)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12
√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

c10 : A9 ∨A10 ∨A11 ∨ ¬A1
√

...

A7
A8

A7

A8

c8

c7

c7

¬A1

c10

c10

c10

¬A1

A2
A3
A4
A5
A6

¬A9

¬A10

A12

¬A11

¬A10

¬A11

A12

A13

A1

¬A9

A13

{...,¬A9,¬A10,¬A11, A12, A13, ...,¬A1, A7, A8}
(unit A7, A8)
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The original backjumping strategy – example (11)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12
√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13 ×
c10 : A9 ∨A10 ∨A11 ∨ ¬A1

√

...

c9c9

c9

Conflict!

A7
A8

A7

A8

c8

c7

c7

¬A1

c10

c10

c10

¬A1

A2
A3
A4
A5
A6

¬A9

¬A10

A12

¬A11

¬A10

¬A11

A12

A13

A1

¬A9

A13

{...,¬A9,¬A10,¬A11, A12, A13, ...,¬A1, A7, A8}
Conflict!
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The original backjumping strategy – example (12)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12
√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13 ×
c10 : A9 ∨A10 ∨A11 ∨ ¬A1

√

...

c9c9

c9

Conflict!

A7
A8

A7

A8

c8

c7

c7

¬A1

c10

c10

c10

¬A1

A2
A3
A4
A5
A6

¬A9

¬A10

A12

¬A11

¬A10

¬A11

A12

A13

A1

¬A9

A13

=⇒conflict set: {¬A9,¬A10,¬A11, A12, A13} .

=⇒learn C11 := A9 ∨ A10 ∨ A11 ∨ ¬A12 ∨ ¬A13
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The original backjumping strategy – example (13)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

c10 : A9 ∨A10 ∨A11 ∨ ¬A1

c11 : A9 ∨A10 ∨A11 ∨ ¬A12 ∨ ¬A13

...

A7
A8

¬A1

A2
A3
A4
A5
A6

¬A9

¬A10

A12

¬A11

¬A10

¬A11

A12

A13

A1

¬A9

=⇒ backtrack to A13 =⇒ Lots of search saved!!!!!!!!!!
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The original backjumping strategy – example (14)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
√

c10 : A9 ∨A10 ∨A11 ∨ ¬A1
√

c11 : A9 ∨A10 ∨A11 ∨ ¬A12 ∨ ¬A13
√

...

¬A1
¬A13

c10

c10

¬A1

c11

c11

c11

c11

c10

¬A13
A7
A8

¬A1
A2
A3
A4
A5
A6

¬A10

¬A11

A12

A13

A1

¬A9

¬A9

¬A10

A12

¬A11

=⇒ backtrack to A13, set A13 and A1 to ⊥,...
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Learning [4, 46]

Idea: When a conflict set C is revealed, then ¬C added to ϕ

=⇒DPLL will no more generate an assignment containing C: when

|C| − 1 literals in C are assigned, the other is set ⊥

Drastic pruning of the search!!!
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Learning – example (cont.)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
√

c10 : A9 ∨A10 ∨A11 ∨ ¬A1
√

c11 : A9 ∨A10 ∨A11 ∨ ¬A12 ∨ ¬A13
√

...

¬A9

¬A11

¬A10

¬A1
¬A13

A12

¬A1
¬A13

c10

c10

¬A1

c11

c11

c11

c11

c10

¬A13
A7
A8

¬A1
A2
A3
A4
A5
A6

¬A10

¬A11

A12

A13

A1

¬A9

¬A9

¬A10

A12

¬A11

=⇒Unit: {¬A1,¬A13}
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State-of-the-art backjumping and learning [54]

! Idea: when a branch µ fails,

1. conflict analysis: find the conflict set η ⊆ µ by generating the

conflict clause C
def

= ¬η via resolution from the falsified clause,

according to the 1stUIP strategy

2. learning: add the conflict clause C to the clause set

3. backjumping: backtrack to the highest branching point s.t. the stack

contains all-but-one literals in η, and then unit-propagate the

unassigned literal on C
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State-of-the-art backjumping and learning: intuitions

! Backjumping: allows for climbing up to many decision levels in the stack

=⇒may avoid lots of redundant search

• intuition: “go back to the oldest decision where you’d have done

something different if only you had known C”

! Learning: in future branches, when all-but-one literals in η are assigned,

the remaining literal is assigned to false by unit-propagation:

=⇒avoid finding the same conflict again

• intuition: “when you’re about to repeat the mistake, do the opposite

of the last step”
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State-of-the-art in backjumping & learning [54]

! A node l in an implication graph is an unique implication point (UIP)

for the last decision level iff any path from the last decision node to

both the conflict nodes passes through l.

• the most recent decision node is an UIP (last UIP)

• all other UIP’s have been assigned after the most recent decision
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State-of-the-art in backjumping & learning [54]

First Unique Implication Point (1st UIP) strategy:

! 1st UIP strategy: adopt the partition involving the 1st UIP for the last

decision level.

! corresponds to consider the first clause encountered containing one

literal of the current level (1st UIP).

¬A4 ∨ A5 ∨ A10

¬A4 ∨ A6 ∨ A11

Conflicting cl.︷ ︸︸ ︷
¬A5 ∨ ¬A6

¬A4 ∨ ¬A5 ∨A11
(A6)

¬A4︸︷︷︸
1st UIP

∨A10 ∨ A11
(A5)
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1st UIP strategy – example (7)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4
√

c4 : ¬A4 ∨A5 ∨A10
√

c5 : ¬A4 ∨A6 ∨A11
√

c6 : ¬A5 ∨ ¬A6 ×
c7 : A1 ∨A7 ∨ ¬A12

√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

last UIP

1st UIP

Conflict!

A5

A6

c4

c6

c6

c5

c4

c5

A5
A6

c3

c3

A4

A4

A2

A3

c2

c2

c1

A2
A3

A1

A1

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

=⇒Conflict set: {¬A10,¬A11, A4}, learn c10 := A10 ∨ A11 ∨ ¬A4
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1st UIP strategy and backjumping [54]

! The added conflict clause states the reason for the conflict

! The procedure backtracks to the most recent decision level of the

variables in the conflict clause which are not the UIP.

! then the conflict clause forces the negation of the UIP by unit

propagation.

E.g.: c10 := A10 ∨A11 ∨ ¬A4

=⇒backtrack to A11, then assign ¬A4
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1st UIP strategy – example (7)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4
√

c4 : ¬A4 ∨A5 ∨A10
√

c5 : ¬A4 ∨A6 ∨A11
√

c6 : ¬A5 ∨ ¬A6 ×
c7 : A1 ∨A7 ∨ ¬A12

√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

last UIP

1st UIP

Conflict!

A5

A6

c4

c6

c6

c5

c4

c5

A5
A6

c3

c3

A4

A4

A2

A3

c2

c2

c1

A2
A3

A1

A1

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

=⇒Conflict set: {¬A10,¬A11, A4}, learn c10 := A10 ∨ A11 ∨ ¬A4
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1st UIP strategy – example (8)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

c10 : A10 ∨A11 ∨ ¬A4

... A5
A6

A4

A2
A3

A1

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

=⇒backtrack up to A11 =⇒ {...,¬A9,¬A10,¬A11}
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1st UIP strategy – example (9)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10
√

c5 : ¬A4 ∨A6 ∨A11
√

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

c10 : A10 ∨A11 ∨ ¬A4
√

...

¬A4

c9

c9

¬A4

A5
A6

A4

A2
A3

A1

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

=⇒ unit propagate ¬A4 =⇒ {...,¬A9,¬A10,¬A11, A4}...
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1st UIP strategy and backjumping – intuition

! An UIP is a single reason implying the conflict at the current level

! substituting the 1st UIP for the last UIP

• does not enlarge the conflict

• may require involving less decision literals from other levels

! by backtracking to the most recent decision level of the variables in the

conflict clause which are not the UIP:

• jump higher

• allows for assigning (the negation of) the UIP as high as possible in

the search tree.
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Remark: the “quality” of conflict sets

! Different ideas of “good” conflict set

• Backjumping: if causes the highest backjump (“local” role)

• Learning: if causes the maximum pruning (“global” role)

! Many different strategies implemented (see, e.g., [4, 46, 54])
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Drawbacks of Learning

! Prunes drastically the search.

! Problem: may cause a blowup in space

=⇒techniques to drop learned clauses when necessary

• according to their size

• according to their activity.
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Restarts [24]

(according to some strategy) restart DPLL

! abandon the current search tree and reconstruct a new one

! The clauses learned prior to the restart are still there after the restart

and can help pruning the search space

! may significantly reduce the overall search space
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What is missing?

...Many things:

1. Data structures for effective BCP (binary clauses, two literal watching,

BCP ordering)

2. Forgetting policies

3. Effective use of L1 and L2 cache

4. Parallel and manycore SAT solvers

5. Phase saving

6. . . .
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Content

√
Basics on SAT . . . . . . . . . . . . . . . . . . . . . . . .

√
NNF, CNF and conversions . . . . . . . . . . . . . . . . .

√
Basic SAT techniques . . . . . . . . . . . . . . . . . . . .

√
Modern SAT Solvers . . . . . . . . . . . . . . . . . . . . .

⇒ Advanced Functionalities: proofs, unsat cores, interpolants
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Advanced functionalities

Advanced SAT functionalities (very important in formal verification):

# Building proofs of unsatisfiability

# Extracting unsatisfiable Cores
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Building Proofs of Unsatisfiability

# When ϕ is unsat, it is very important to build a (resolution) proof of unsatisfiability:

• to verify the result of the solver

• to understand a “reason” for unsatisfiability

• to build unsatisfiable cores and interpolants

# can be built by keeping track of the resolution steps performed when constructing

the conflict clauses.
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Building Proofs of Unsatisfiability

# recall: each conflict clause Ci learned is computed from the conflicting clause Ci−k

by backward resolving with the antecedent clause of one literal

C1

C2

Ck

conflicting clause︷ ︸︸ ︷
Ci−k
....

Ci−2

Ci−1

Ci︸︷︷︸
conflict clause

# C1, ..., Ck, and Ci−k can be original or learned clauses

# each resolution (sub)proof can be easily tracked:

i i-k -> i-k-1

...

2 i-2 -> i-1

1 i-1 -> i
140



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Building Proofs of Unsatisfiability

# ... in particular, if ϕ is unsatisfiable, the last step produces “false” as conflict clause:

C1

C2

Ck

conflicting clause︷ ︸︸ ︷
Ci−k
....

Ci−2

Ci−1

⊥

# note: C1 = l, Ci−1 = ¬l for some literal l

# C1, ..., Ck, and Ci−k can be original or learned clauses...
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Building Proofs of Unsatisfiability

Starting from the previous proof of unsatisfiability, repeat recursively:

# for every learned leaf clause Ci, substitute Ci with the resolution proof generating it

until all leaf clauses are original clauses

C11 ....

C1i1 .... C1ij1i

....
C1i .... C1j1

....
C1

C2

Ck1 .... Ckjk

....
Ck

Ci−k1 .... Ci−kji−k

....
Ci−k

....
Ci−2

Ci−1

⊥

=⇒ we obtain a resolution proof of unsatisfiability for (a subset of) the clauses in ϕ
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Building Proofs of Unsatisfiability: example

(B0∨¬B1∨A1)∧ (B0∨B1∨A2)∧ (¬B0∨B1∨A2)∧ (¬B0 ∨ ¬B1)∧ (¬B2 ∨ ¬B4)∧
(¬A2 ∨B2) ∧ (¬A1 ∨B3) ∧B4 ∧ (A2 ∨B5) ∧ (¬B6 ∨ ¬B4) ∧ (B6 ∨ ¬A1) ∧B7

(B1 ∨ B0 ∨ A2)

(B0 ∨ A1 ∨ A2)

(B0 ∨ ¬B1 ∨ A1)

(B6 ∨ A2) (¬B6 ∨ ¬B4)

(A2 ∨ ¬B4) (¬A2 ∨B2)

(¬B4 ∨B2)

(A1 ∨ A2)(¬A1 ∨ B6)

(¬B2 ∨ ¬B4)

(¬B4)B4

⊥

(¬B0 ∨ ¬B1)

(¬B0 ∨ A2)

(B1 ∨ ¬B0 ∨A2)
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Extraction of unsatisfiable cores

# Problem: given a unsatisfiable set of clauses, extract from it a (possibly

small/minimal/minimum) unsatisfiable subset

# Lots of literature on the topic [56, 30, 32, 38, 53, 25, 19, 6]

# We recognize two main approaches:

• Proof-based approach [56]: byproduct of finding a resolution proof

• Assumption-based approach [30]: use extra variables labeling clauses

# many optimizations for further reducing the size of the core:

• repeat the process up to fixpoit

• remove clauses one-by one, until satisfiability is obtained

• combinations of the two processed above

• ...
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The proof-based approach to unsat-core extraction
Unsat core: the set of leaf clauses of a resolution proof

(B0 ∨ ¬B1 ∨A1)∧(B0 ∨B1 ∨A2)∧(¬B0 ∨B1 ∨A2)∧(¬B0 ∨ ¬B1)∧(¬B2 ∨ ¬B4)∧
(¬A2 ∨B2) ∧ (¬A1 ∨B3) ∧B4 ∧ (A2 ∨B5) ∧ (¬B6 ∨ ¬B4) ∧ (B6 ∨ ¬A1) ∧B7

(B1 ∨ B0 ∨ A2)

(B0 ∨ A1 ∨ A2)

(B0 ∨ ¬B1 ∨ A1)

(B6 ∨A2) (¬B6 ∨ ¬B4)

(A2 ∨ ¬B4) (¬A2 ∨ B2)

(¬B4 ∨ B2)

(A1 ∨A2)(¬A1 ∨B6)

(¬B2 ∨ ¬B4)

(¬B4)B4

⊥

(¬B0 ∨ ¬B1)

(¬B0 ∨ A2)

(B1 ∨ ¬B0 ∨ A2)
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The assumption-based approach to unsat-core extraction

Based on the following process:

1. each clause Ci is substituted by Si → Ci, s.t. Si fresh “selector” variable

2. before starting the search each Si is forced to true.

3. final conflict clause at dec. level 0:
∨

j ¬Sj

=⇒{Cj}j is the unsat core
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The assumption-based approach to unsat-core extraction

(B0 ∨ ¬B1 ∨A1) ∧ (B0 ∨B1 ∨A2) ∧ (¬B0 ∨B1 ∨A2)∧
(¬B0 ∨ ¬B1) ∧ (¬B2 ∨ ¬B4) ∧ (¬A2 ∨B2) ∧ (¬A1 ∨B3)∧
B4 ∧ (A2 ∨B5) ∧ (¬B6 ∨ ¬B4) ∧ (B6 ∨ ¬A1) ∧B7

add selector variables:
S1 → (B0 ∨ ¬B1 ∨A1) ∧ S2 → (B0 ∨B1 ∨A2) ∧ S3 → (¬B0 ∨B1 ∨A2)∧
S4 → (¬B0 ∨ ¬B1) ∧ S5 → (¬B2 ∨ ¬B4) ∧ S6 → (¬A2 ∨B2) ∧ (S7 → ¬A1 ∨B3)∧
S8 → B4 ∧ S9 → (A2 ∨B5) ∧ S10 → (¬B6 ∨ ¬B4) ∧ S11 → (B6 ∨ ¬A1) ∧ S12 → B7

The conflict analysis returns:

¬S1 ∨ ¬S2 ∨ ¬S3 ∨ ¬S4 ∨ ¬S5 ∨ ¬S6 ∨ ¬S8 ∨ ¬S10 ∨ ¬S11,

corresponding to the unsat core:

(B0 ∨ ¬B1 ∨A1) ∧ (B0 ∨B1 ∨A2) ∧ (¬B0 ∨B1 ∨A2)∧
(¬B0 ∨ ¬B1) ∧ (¬B2 ∨ ¬B4) ∧ (¬A2 ∨B2)∧
B4 ∧ (¬B6 ∨ ¬B4) ∧ (B6 ∨ ¬A1)
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DISCLAIMER

The list of references above is by no means intended to be all-inclusive. The author of these slides

apologizes both with the authors and with the readers for all the relevant works which are not cited

here.

The papers (co)authored by the author of these slides are availlable at:

http://www.dit.unitn.it/~rseba/publist.html.

Related web sites:

• Combination Methods in Automated Reasoning

http://combination.cs.uiowa.edu/

• SMT-LIB - The Satisfiability Modulo Theories Library

http://goedel.cs.uiowa.edu/smtlib/

• SATLive! - Up-to-date links for SAT

http://www.satlive.org/index.jsp

• SATLIB - The Satisfiability Library

http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/
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