
4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

4th International Seminar on New Issues in Artificial Intelligence

Madrid, Jan. 31st - Feb. 4th 2011

EFFICIENT BOOLEAN REASONING:

SAT, PREFERENCES & QBFs

PROPOSITIONAL SATISFIABILITY (SAT)

Enrico Giunchiglia
DIST, University of Genoa, Italy

giunchiglia@unige.it
http://www.star.dist.unige.it/˜enrico

(Most of the) Slides by: Roberto Sebastiani

http://disi.unitn.it/~rseba

Last update: February 1, 2011.
1



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Motivations

! Last ten years: impressive advance in Boolean reasoning techniques

• extremely efficient solvers [52, 46, 4, 29, 36, 55, 23]

• hard “real-world” problems encoded into SAT (e.g.,

– planning

– model checking

– circuit and software testing

– security & criptanalysis

– reasoning on conceptual models

– bioinformatics

– feature extraction from images

– ...

2



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Motivations

Application benchmarks submitted to the last SAT competition (2009):

1. Aprove: Term Rewriting systems benchmarks.

2. BioInfo I: Queries to nd the maximal size of a biological behavior

without cycles in discrete genetic networks.

3. BioInfo I I: Evolutionary trees.

4. Bit Verif: Bit precise software verication generated by the SMT solver
Boolector.

5. C32SAT: Software verication generated by the C32SAT satisability
checker for C programs.

6. Crypto: Encode attacks for both the DES and MD5 crypto systems.

7. Diagnosis: 4 dierent encodings of discrete event systems.
3



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Motivations

 0

 200

 400

 600

 800

 1000

 1200

 0  20  40  60  80  100  120  140  160  180

C
P

U
 T

im
e 

(i
n
 s

ec
o
n
d
s)

Number of problems solved

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Limmat 02
Zchaff 02
Berkmin 561 02
Forklift 03
Siege 03
Zchaff 04
SatELite 05
Minisat 2.0 06
Picosat 07
Rsat 07
Minisat 2.1 08
Precosat 09
Glucose 09
Clasp 09
Cryptominisat 10
Lingeling 10

Courtesy by Daniel Le Berre
4



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Motivations

 0

 200

 400

 600

 800

 1000

 1200

 0  20  40  60  80  100  120  140

C
P

U
 T

im
e 

(i
n
 s

ec
o
n
d
s)

Number of problems solved

Results of the SAT competition/race winners on the SAT 2009 crafted benchmarks, 20mn timeout

Zchaff 02
Berkmin 561 02
Forklift 03
Satzoo 03
Siege 03
Zchaff 04
SatELite 05
Minisat 2.0 06
Picosat 07
March KS 07
Minisat 2.1 08
Precosat 09
Glucose 09
Clasp 09
Cryptominisat 10
Lingeling 10

Courtesy by Daniel Le Berre
5



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Content

⇒ Basics on SAT . . . . . . . . . . . . . . . . . . . . . . . .

• NNF, CNF and conversions . . . . . . . . . . . . . . . . .

• Basic SAT techniques . . . . . . . . . . . . . . . . . . . .

• Modern SAT Solvers . . . . . . . . . . . . . . . . . . . . .

• Advanced Functionalities: proofs, unsat cores, interpolants

6



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Basic notation & definitions

! Boolean formula

• ",⊥ are formulas

• A propositional atom A1, A2, A3, ... is a formula;

• if ϕ1 and ϕ2 are formulas, then ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 → ϕ2,

ϕ1 ↔ ϕ2 are formulas.

! Literal: a propositional atom Ai (positive literal) or its negation ¬Ai

(negative literal)

! N.B.: if l := ¬Ai, then ¬l := Ai

! Atoms(ϕ): the set {A1, ..., AN} of atoms occurring in ϕ.

! a Boolean formula can be represented as a tree or as a DAG

7



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

TREE and DAG representation of formulas: example

(A1 ↔ A2)↔ (A3 ↔ A4)

⇓
(((A1 ↔ A2)→ (A3 ↔ A4))∧
((A3 ↔ A4)→ (A1 ↔ A2)))

⇓
(((A1 → A2) ∧ (A2 → A1))→ ((A3 → A4) ∧ (A4 → A3)))∧
(((A3 → A4) ∧ (A4 → A3))→ (((A1 → A2) ∧ (A2 → A1))))

8



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

TREE and DAG representation of formulas: example (cont)

A1 A2 A1A2 A3 A3A4 A4 A3 A3A4 A4 A1 A2 A1A2

A1 A2 A3 A4

Tree Representation

DAG Representation

9



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Basic notation & definitions (cont)

! Total truth assignment µ for ϕ:

µ : Atoms(ϕ) )−→ {",⊥}.
! Partial Truth assignment µ for ϕ:

µ : A )−→ {",⊥}, A ⊂ Atoms(ϕ).

! Set and formula representation of an assignment:

• µ can be represented as a set of literals:

EX: {µ(A1) := ", µ(A2) := ⊥} =⇒ {A1,¬A2}
• µ can be represented as a formula:

EX: {µ(A1) := ", µ(A2) := ⊥} =⇒ A1 ∧ ¬A2

10



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Basic notation & definitions (cont)

ϕ1 ϕ2 ¬ϕ1 ϕ1 ∧ ϕ2 ϕ1 ∨ ϕ2 ϕ1 → ϕ2 ϕ1 ↔ ϕ2

⊥ ⊥ " ⊥ ⊥ " "
⊥ " " ⊥ " " ⊥
" ⊥ ⊥ ⊥ " ⊥ ⊥
" " ⊥ " " " "

N.B.:

ϕ1 ∨ ϕ2 := ¬(¬ϕ1 ∧ ¬ϕ2),

ϕ1 → ϕ2 := (¬ϕ1 ∨ ϕ2),

ϕ1 ↔ ϕ2 := (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1).

11



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Basic notation & definitions (cont)

! µ |= ϕ (µ satisfies ϕ):

• µ |= Ai ⇐⇒ µ(Ai) = "
• µ |= ¬ϕ⇐⇒ not µ |= ϕ

• µ |= ϕ1 ∧ ϕ2 ⇐⇒ µ |= ϕ1 and µ |= ϕ2

• µ |= ϕ1 ∨ ϕ2 ⇐⇒ µ |= ϕ1 or µ |= ϕ2

• µ |= ϕ1 → ϕ2 ⇐⇒ if µ |= ϕ1, then µ |= ϕ2

• µ |= ϕ1 ↔ ϕ2 ⇐⇒ µ |= ϕ1 iff µ |= ϕ2

! ϕ is satisfiable iff µ |= ϕ for some µ

! ϕ1 |= ϕ2 (ϕ1 entails ϕ2):

ϕ1 |= ϕ2 iff for every µ µ |= ϕ1 =⇒ µ |= ϕ2

! |= ϕ (ϕ is valid):

|= ϕ iff for every µ µ |= ϕ

! ϕ is valid ⇐⇒ ¬ϕ is not satisfiable
12



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Equivalence and equi-satisfiability

! ϕ1 and ϕ2 are equivalent iff, for every µ,

µ |= ϕ1 iff µ |= ϕ2

! ϕ1 and ϕ2 are equi-satisfiable iff

exists µ1 s.t. µ1 |= ϕ1 iff exists µ2 s.t. µ2 |= ϕ2

! ϕ1, ϕ2 equivalent

⇓ -⇑
ϕ1, ϕ2 equi-satisfiable

! EX: ϕ1 ∨ ϕ2 and (ϕ1 ∨ ¬A3) ∧ (A3 ∨ ϕ2) are in general equi-satisfiable

but not equivalent.

13



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Complexity

! For N variables, there are up to 2N truth assignments to be checked.

! The problem of deciding the satisfiability of a propositional formula is

NP-complete [10].

! The most important logical problems (validity, inference, entailment,

equivalence, ...) can be straightforwardly reduced to satisfiability, and

are thus (co)NP-complete.

⇓

No existing worst-case-polynomial algorithm.

14



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Content

√
Basics on SAT . . . . . . . . . . . . . . . . . . . . . . . .

⇒ NNF, CNF and conversions . . . . . . . . . . . . . . . . .

• Basic SAT techniques . . . . . . . . . . . . . . . . . . . .

• Modern SAT Solvers . . . . . . . . . . . . . . . . . . . . .

• Advanced Functionalities: proofs, unsat cores, interpolants

15



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Negative normal form (NNF)

! ϕ is in Negative normal form iff it is given only by applications of ∧,∨
to literals.

! every ϕ can be reduced into NNF:

1. substituting all →’s and ↔’s:

ϕ1 → ϕ2 =⇒ ¬ϕ1 ∨ ϕ2

ϕ1 ↔ ϕ2 =⇒ (¬ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ¬ϕ2)

2. pushing down negations recursively:

¬(ϕ1 ∧ ϕ2) =⇒ ¬ϕ1 ∨ ¬ϕ2

¬(ϕ1 ∨ ϕ2) =⇒ ¬ϕ1 ∧ ¬ϕ2

¬¬ϕ1 =⇒ ϕ1

! Preserves the equivalence of formulas.

16



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

NNF: example

(A1 ↔ A2)↔ (A3 ↔ A4)

⇓
((((A1 → A2) ∧ (A1 ← A2))→ ((A3 → A4) ∧ (A3 ← A4)))∧
(((A1 → A2) ∧ (A1 ← A2))← ((A3 → A4) ∧ (A3 ← A4))))

⇓
((¬((¬A1 ∨ A2) ∧ (A1 ∨ ¬A2)) ∨ ((¬A3 ∨ A4) ∧ (A3 ∨ ¬A4)))∧
(((¬A1 ∨A2) ∧ (A1 ∨ ¬A2)) ∨ ¬((¬A3 ∨ A4) ∧ (A3 ∨ ¬A4))))

⇓
((((A1 ∧ ¬A2) ∨ (¬A1 ∧ A2)) ∨ ((¬A3 ∨ A4) ∧ (A3 ∨ ¬A4)))∧
(((¬A1 ∨ A2) ∧ (A1 ∨ ¬A2)) ∨ ((A3 ∧ ¬A4) ∨ (¬A3 ∧ A4))))

17



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

NNF: example (cont)

A1 !A2 !A1 A2 !A3 A4 A3 !A4 !A1 A2 A1 !A2 !A3!A4A3 A4

!B1 B2 B1 !B2

A1 !A2 !A1 A2 !A3 A4 A3 !A4

!B1 B2 B1 !B2

Tree Representation

DAG Representation

N.B. For each non-literal subformula ϕ, ϕ and ¬ϕ have different

representations =⇒they are not shared.
18



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Optimized polynomial representations

Reduced Boolean Circuits [1], Boolean Expression Diagrams [51].

! Maximize the sharing in DAG representations:
{∧,↔,¬}-only, negations on arcs, sorting of subformulae, lifting of ¬’s

over ↔’s,...

19



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Conjunctive Normal Form (CNF)

! ϕ is in Conjunctive normal form iff it is a conjunction of disjunctions of

literals:
L∧

i=1

Ki∨

ji=1

lji

! the disjunctions of literals
∨Ki

ji=1 lji are called clauses

! Easier to handle: list of lists of literals.

=⇒ no reasoning on the recursive structure of the formula

20



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Classic CNF Conversion CNF (ϕ)

! Every ϕ can be reduced into CNF by, e.g.,

1. converting it into NNF;

2. applying recursively the DeMorgan’s Rule:

(ϕ1 ∧ ϕ2) ∨ ϕ3 =⇒ (ϕ1 ∨ ϕ3) ∧ (ϕ2 ∨ ϕ3)

! Worst-case exponential.

! Atoms(CNF (ϕ)) = Atoms(ϕ).

! CNF (ϕ) is equivalent to ϕ.

! Rarely used in practice.

21



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Labeling CNF conversion CNFlabel(ϕ) [39, 13]

! Every ϕ can be reduced into CNF by, e.g., applying recursively

bottom-up the rules:

ϕ =⇒ ϕ[(li ∨ lj)|B] ∧ CNF (B ↔ (li ∨ lj))

ϕ =⇒ ϕ[(li ∧ lj)|B] ∧ CNF (B ↔ (li ∧ lj))

ϕ =⇒ ϕ[(li ↔ lj)|B] ∧ CNF (B ↔ (li ↔ lj))

li, lj being literals and B being a “new” variable.

! Worst-case linear.

! Atoms(CNFlabel(ϕ)) ⊇ Atoms(ϕ).

! CNFlabel(ϕ) is equi-satisfiable w.r.t. ϕ.

! Non-normal.

! More used in practice.
22



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Labeling CNF conversion CNFlabel(ϕ) (cont.)

CNF (B ↔ (li ∨ lj)) ⇐⇒ (¬B ∨ li ∨ lj)∧
(B ∨ ¬li)∧
(B ∨ ¬lj)

CNF (B ↔ (li ∧ lj)) ⇐⇒ (¬B ∨ li)∧
(¬B ∨ lj)∧
(B ∨ ¬li¬lj)

CNF (B ↔ (li ↔ lj)) ⇐⇒ (¬B ∨ ¬li ∨ lj)∧
(¬B ∨ li ∨ ¬lj)

(B ∨ li ∨ lj)

(B ∨ ¬li ∨ ¬lj)

23



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Labeling CNF conversion CNFlabel – example

!A3 !A4 A4 A3!A3 A4 !A4A1 A5 A2 !A6 A1 !A5 !A2 A6 A1

B1 B2 B3 B4 B5 B6 B7 B8

B9 B10 B11 B12

B13 B14

B15

CNF (B1 ↔ (¬A3 ∨ A1)) ∧
... ∧
CNF (B8 ↔ (A1 ∨ ¬A4)) ∧
CNF (B9 ↔ (B1 ↔ B2)) ∧
... ∧
CNF (B12 ↔ (B7 ∧ B8)) ∧
CNF (B13 ↔ (B9 ∨ B10)) ∧
CNF (B14 ↔ (B11 ∨ B12)) ∧
CNF (B15 ↔ (B13 ∧ B14)) ∧
B15

24



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Labeling CNF conversion CNFlabel (improved)

! As in the previous case, applying instead the rules:

ϕ =⇒ ϕ[(li ∨ lj)|B] ∧ CNF (B → (li ∨ lj)) if (li ∨ lj) pos.

ϕ =⇒ ϕ[(li ∨ lj)|B] ∧ CNF ((li ∨ lj)→ B) if (li ∨ lj) neg.

ϕ =⇒ ϕ[(li ∧ lj)|B] ∧ CNF (B → (li ∧ lj)) if (li ∧ lj) pos.

ϕ =⇒ ϕ[(li ∧ lj)|B] ∧ CNF ((li ∧ lj)→ B) if (li ∧ lj) neg.

ϕ =⇒ ϕ[(li ↔ lj)|B] ∧ CNF (B → (li ↔ lj)) if (li ↔ lj) pos.

ϕ =⇒ ϕ[(li ↔ lj)|B] ∧ CNF ((li ↔ lj)→ B) if (li ↔ lj) neg.

! Smaller in size:
CNF (B → (li ∨ lj)) = (¬B ∨ li ∨ lj)

CNF (((li ∨ lj)→ B)) = (¬li ∨B) ∧ (¬lj ∨ B)

25



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Labeling CNF conversion CNFlabel(ϕ) (cont.)

CNF (B → (li ∨ lj)) ⇐⇒ (¬B ∨ li ∨ lj)

CNF (B ← (li ∨ lj)) ⇐⇒ (B ∨ ¬li)∧
(B ∨ ¬lj)

CNF (B → (li ∧ lj)) ⇐⇒ (¬B ∨ li)∧
(¬B ∨ lj)

CNF (B ← (li ∧ lj)) ⇐⇒ (B ∨ ¬li¬lj)

CNF (B → (li ↔ lj)) ⇐⇒ (¬B ∨ ¬li ∨ lj)∧
(¬B ∨ li ∨ ¬lj)

CNF (B ← (li ↔ lj)) ⇐⇒ (B ∨ li ∨ lj)∧
(B ∨ ¬li ∨ ¬lj)

26



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Labeling CNF conversion CNFlabel – example

!A3 !A4 A4 A3!A3 A4 !A4A1 A5 A2 !A6 A1 !A5 !A2 A6 A1

B1 B2 B3 B4 B5 B6 B7 B8

B9 B10 B11 B12

B13 B14

B15

Basic Improved

CNF (B1 ↔ (¬A3 ∨ A1)) ∧
... ∧
CNF (B8 ↔ (A1 ∨ ¬A4)) ∧
CNF (B9 ↔ (B1 ↔ B2)) ∧
... ∧
CNF (B12 ↔ (B7 ∧ B8)) ∧
CNF (B13 ↔ (B9 ∨ B10)) ∧
CNF (B14 ↔ (B11 ∨ B12)) ∧
CNF (B15 ↔ (B13 ∧ B14)) ∧
B15

CNF (B1 ↔ (¬A3 ∨ A1)) ∧
... ∧
CNF (B8 → (A1 ∨ ¬A4)) ∧
CNF (B9 → (B1 ↔ B2)) ∧
... ∧
CNF (B12 → (B7 ∧ B8)) ∧
CNF (B13 → (B9 ∨ B10)) ∧
CNF (B14 → (B11 ∨ B12)) ∧
CNF (B15 → (B13 ∧ B14)) ∧
B15

27



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Labeling CNF conversion CNFlabel – further optimizations

! Do not apply CNFlabel when not necessary:

(e.g., CNFlabel(ϕ1 ∧ ϕ2) =⇒ CNFlabel(ϕ1) ∧ ϕ2,

if ϕ2 already in CNF)

! Apply Demorgan’s rules where it is more effective: [13] (e.g.,

CNFlabel(ϕ1∧(A→ (B∧C))) =⇒ CNFlabel(ϕ1)∧(¬A∨B)∧(¬A∨C)

! exploit the associativity of ∧’s and ∨’s:

... (A1 ∨ (A2 ∨ A3))︸ ︷︷ ︸
B

... =⇒ ...CNF (B ↔ (A1 ∨ A2 ∨ A3))...

! before applying CNFlabel, rewrite the initial formula so that to

maximize the sharing of subformulas (RBC, BED)

! ...

28



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Content

√
Basics on SAT . . . . . . . . . . . . . . . . . . . . . . . .

√
NNF, CNF and conversions . . . . . . . . . . . . . . . . .

⇒ Basic SAT techniques . . . . . . . . . . . . . . . . . . . .

• Modern SAT Solvers . . . . . . . . . . . . . . . . . . . . .

• Advanced Functionalities: proofs, unsat cores, interpolants

29



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Truth Tables

! Exhaustive evaluation of all subformulas:

ϕ1 ϕ2 ϕ1 ∧ ϕ2 ϕ1 ∨ ϕ2 ϕ1 → ϕ2 ϕ1 ↔ ϕ2

⊥ ⊥ ⊥ ⊥ " "
⊥ " ⊥ " " ⊥
" ⊥ ⊥ " ⊥ ⊥
" " " " " "

! Requires polynomial space.

! Never used in practice

(100 variables ⇒ > 1030 assignment ⇒ > 1012 years assuming the

evaluation of one assignment takes 1ns.)

30



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Resolution [41, 12]

! Search for a refutation of ϕ

! ϕ is represented as a set of clauses

! Applies iteratively the resolution rule to pairs of clauses containing a

conflicting literal, until a false clause is generated or the resolution rule

is no more applicable

! Many different strategies

31



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Resolution Rule

Resolution of a pair of clauses with exactly one incompatible variable:

(

common︷ ︸︸ ︷
l1 ∨ ... ∨ lk ∨

resolvent︷︸︸︷
l ∨

C′

︷ ︸︸ ︷
l′k+1 ∨ ... ∨ l′m ) (

common︷ ︸︸ ︷
l1 ∨ ... ∨ lk ∨

resolvent︷︸︸︷
¬l ∨

C′′

︷ ︸︸ ︷
l′′k+1 ∨ ... ∨ l′′n )

( l1 ∨ ... ∨ lk︸ ︷︷ ︸
common

∨ l′k+1 ∨ ... ∨ l′m︸ ︷︷ ︸
C′

∨ l′′k+1 ∨ ... ∨ l′′n︸ ︷︷ ︸
C′′

)

EXAMPLE:
( A ∨B ∨ C ∨ D ∨ E ) ( A ∨B ∨ ¬C ∨ F )

( A ∨B ∨ D ∨ E ∨ F )

NOTE: many standard inference rules subcases of resolution:

A→ B B → C
A→ C

(Transit.) A A→ B
B

(M. Ponens) ¬B A→ B
¬A

(M. Tollens)

32



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Resolution Rules [12]: unit propagation

! Unit resolution:
Γ′ ∧ (l) ∧ (¬l ∨

∨
i li)

Γ′ ∧ (l) ∧ (
∨

i li)

! Unit subsumption:
Γ′ ∧ (l) ∧ (l ∨

∨
i li)

Γ′ ∧ (l)

Applied before general resolution rule!

33



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Resolution: basic strategy [12]

function Resolution(Γ)

if ⊥ ∈ Γ /* unsat */

then return False;

if (Resolve() is no more applicable to Γ) /* sat */

then return True;

if {a unit clause (l) occurs in Γ} /* unit */

then Γ := Unit Propagate(l, Γ));
return Resolution(Γ)

v := select-variable(Γ); /* resolve */

Γ =Γ ∪
⋃

v∈C′,¬v∈C′′{Resolve(C′, C ′′)/{C′, C ′′}};
return Resolution(Γ)

34



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Resolution: Examples

(A1 ∨A2) (A1 ∨ ¬A2) (¬A1 ∨A2) (¬A1 ∨ ¬A2)

⇓
(A2) (A2 ∨ ¬A2) (¬A2 ∨A2) (¬A2)

⇓
⊥

=⇒UNSAT

35



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Resolution: Examples (cont.)

(A ∨B ∨ C) (B ∨ ¬C ∨ ¬F ) (¬B ∨ E)

⇓
(A ∨ C ∨ E) (¬C ∨ ¬F ∨ E)

⇓
(A ∨ E ∨ ¬F )

=⇒SAT

36



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Resolution: Examples

(A ∨B) (A ∨ ¬B) (¬A ∨ C) (¬A ∨ ¬C)

⇓
(A) (¬A ∨ C) (¬A ∨ ¬C)

⇓
(C) (¬C)

⇓
⊥

=⇒UNSAT

37



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Resolution – summary

! Requires CNF

! Γ may blow up

=⇒ May require exponential space

! Not very much used in Boolean reasoning (unless integrated with DPLL

procedure in recent implementations)

38



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Semantic tableaux [47]

! Search for an assignment satisfying ϕ

! applies recursively elimination rules to the connectives

! If a branch contains Ai and ¬Ai, (ψi and ¬ψ1) for some i, the branch is

closed, otherwise it is open.

! if no rule can be applied to an open branch µ, then µ |= ϕ;

! if all branches are closed, the formula is not satisfiable;

39



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Tableau elimination rules

ϕ1 ∧ ϕ2
ϕ1
ϕ2

¬(ϕ1 ∨ ϕ2)
¬ϕ1¬ϕ2

¬(ϕ1 → ϕ2)
ϕ1¬ϕ2 (∧-elimination)

¬¬ϕ
ϕ (¬¬-elimination)

ϕ1 ∨ ϕ2
ϕ1 ϕ2

¬(ϕ1 ∧ ϕ2)
¬ϕ1 ¬ϕ2

ϕ1 → ϕ2
¬ϕ1 ϕ2 (∨-elimination)

ϕ1 ↔ ϕ2
ϕ1 ¬ϕ1
ϕ2 ¬ϕ2

¬(ϕ1 ↔ ϕ2)
ϕ1 ¬ϕ1¬ϕ2 ϕ2 (↔ -elimination).

40



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Semantic Tableaux – example

ϕ = (A1 ∨A2) ∧ (A1 ∨ ¬A2) ∧ (¬A1 ∨ A2) ∧ (¬A1 ∨ ¬A2)

A1 A2

A1 !A2 !A2A1

!A1 !A1 !A1A2 A2 A2

!A1 !A1!A2 !A2

41



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Tableau algorithm

function Tableau(Γ)
if Ai ∈ Γ and ¬Ai ∈ Γ /* branch closed */

then return False;

if (ϕ1 ∧ ϕ2) ∈ Γ /* ∧-elimination */

then return Tableau(Γ ∪ {ϕ1, ϕ2}\{(ϕ1 ∧ ϕ2)});
if (¬¬ϕ1) ∈ Γ /* ¬¬-elimination */

then return Tableau(Γ ∪ {ϕ1}\{(¬¬ϕ1)});
if (ϕ1 ∨ ϕ2) ∈ Γ /* ∨-elimination */

then return Tableau(Γ ∪ {ϕ1}\{(ϕ1 ∨ ϕ2)}) or
Tableau(Γ ∪ {ϕ2}\{(ϕ1 ∨ ϕ2)});

...

return True; /* branch expanded */

42



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Semantic Tableaux – summary

! Handles all propositional formulas (CNF not required).

! Branches on disjunctions

! Intuitive, modular, easy to extend

=⇒ loved by logicians.

! Rather inefficient

=⇒ avoided by computer scientists.

! Requires polynomial space

43



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

DPLL [12, 11]

! Davis-Putnam-Longeman-Loveland procedure (DPLL)

! Tries to build an assignment µ satisfying ϕ;

! At each step assigns a truth value to (all instances of) one atom.

! Performs deterministic choices first.

44



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

DPLL rules

ϕ1 ∧ (l)
ϕ1[l|"]

(Unit)

ϕ

ϕ[l|"]
(l Pure)

ϕ

ϕ[l|"] ϕ[l|⊥]
(split)

(l is a pure literal in ϕ iff it occurs only positively).

• Split applied if and only if the others cannot be applied.

• Richer formalisms described in [49, 37]

45



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

DPLL – example

ϕ = (A1 ∨A2) ∧ (A1 ∨ ¬A2) ∧ (¬A1 ∨ A2) ∧ (¬A1 ∨ ¬A2)

A1 !A1

A2 A2

46



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

DPLL Algorithm

function DPLL(ϕ, µ)

if ϕ = " /* base */

then return True;

if ϕ = ⊥ /* backtrack */

then return False;

if {a unit clause (l) occurs in ϕ} /* unit */

then return DPLL(assign(l, ϕ), µ ∧ l);

if {a literal l occurs pure in ϕ} /* pure */

then return DPLL(assign(l, ϕ), µ ∧ l);

l := choose-literal(ϕ); /* split */

return DPLL(assign(l, ϕ), µ ∧ l) or
DPLL(assign(¬l, ϕ), µ ∧ ¬l);

47



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

DPLL – summary

! Handles CNF formulas (non-CNF variant known [2, 22]).

! Branches on truth values

=⇒all instances of an atom assigned simultaneously

! Postpones branching as much as possible.

! Mostly ignored by logicians.

! Probably the most efficient SAT algorithm

=⇒ loved by computer scientists.

! Requires polynomial space

! Choose literal() critical!

! Many very efficient implementations [52, 46, 4, 36].

48



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Ordered Binary Decision Diagrams (OBDDs) [8]

! “If-then-else” binary DAGs with two leaves: 1 and 0

! Paths leading to 1 represent models

Paths leading to 0 represent counter-models

! Variable ordering A1, A2, ..., An imposed a priori.

49



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

OBDD - Examples

FT

b3

a3

b3

b2

a2

b2

b1b1

a1 a1

a2

a3 a3 a3

a2

a3

b1 b1 b1 b1 b1 b1

b2 b2 b2 b2

b3 b3

b1 b1

T F

OBDDs of (a1 ↔ b1) ∧ (a2 ↔ b2) ∧ (a3 ↔ b3) with different variable

orderings

50



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Ordered Decision Trees

! Ordered Decision Tree: from root to leaves, variables are encountered

always in the same order

! Example: Ordered Decision tree for ϕ = (a ∧ b) ∨ (c ∧ d)

a

b

cc

d d d d dd d

c

d

b

c

0 0 0 0 0 01 1 0 0 0 1 1 1 1 1
51



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

From Ordered Decision Trees to OBDD’s: reductions

! Recursive applications of the following reductions:

• share subnodes: point to the same occurrence of a subtree

• remove redundancies: nodes with same left and right children can be

eliminated

52



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Reduction: example

a

b

cc

d d d d dd d

c

d

b

c

0 0 0 0 0 01 1 0 0 0 1 1 1 1 1
53



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Reduction: example [cont.]

Detect redundacies: a

b

cc

d d d d dd d

c

d

b

c

0 0 0 0 0 01 1 0 0 0 1 1 1 1 1
54



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Reduction: example [cont.]

Remove redundacies: a

b

cc

d d d

c

b

c

0 01 1 0 1

0 0 0 1 1

55



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Reduction: example [cont.]

Remove redundacies: a

b

cc

d d d

b

c

0 01 1 0 1

0 0 0

1

56



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Reduction: example [cont.]

Share identical nodes: a

b

cc

d d d

b

c

0 01 1 0 1

0 0 0

1

57



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Reduction: example [cont.]

Share identical nodes: a

b

c

d

b

0

1
58



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Reduction: example [cont.]

Detect redundancies: a

b

c

d

b

0

1
59



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Reduction: example [cont.]

Remove redundancies: 

Final OBDD!

a

c

d

b

0

1
60



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Recursive structure of an OBDD

! OBDD(", {...}) = 1,

! OBDD(⊥, {...}) = 0,

! OBDD(ϕ, {A1, A2, ..., An}) =

if A1

then OBDD(ϕ[A1|"], {A2, ..., An})
else OBDD(ϕ[A1|⊥], {A2, ..., An})

61



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Incrementally building an OBDD

! obdd build(", {...}) := 1,

! obdd build(⊥, {...}) := 0,

! obdd build((ϕ1 op ϕ2), {A1, ..., An}) :=

reduce(

obdd merge( op,

obdd build(ϕ1, {A1, ..., An}),
obdd build(ϕ2, {A1, ..., An}),
{A1, ..., An}

) )

op ∈ {∧,∨,→,↔}

62



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

OBBD incremental building – example

ϕ = (A1 ∨A2) ∧ (A1 ∨ ¬A2) ∧ (¬A1 ∨ A2) ∧ (¬A1 ∨ ¬A2)

T F

A2

A1

T F

A2

A1

T F

A2

A1

T F

A2

A1

A1

T F

A1

T F

F

(A1 v !A2)(A1 v A2) (!A1 v A2) (!A2 v !A2)

(A1 v A2) ^ (A1 v !A2) (!A1 v A2) ^ (!A1 v !A2)

(A1 v A2) ^ (A1 v !A2) (!A1 v A2) ^ (!A1 v !A2)^

63



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Critical choice of variable Orderings in OBDD’s

ϕ = (a1← b1) ∧ (a2← b2) ∧ (a3← b3)

True False

a1

b1

a2

b2 b2

a3

b3 b3

b1

b1b1b1b1b1b1b1b1

a3 a3 a3 a3

a2a2

a1

b3 b3

b2b2b2b2

FalseTrue

Linear size Exponential size

64



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

OBDD’s as canonical representation of Boolean formulas

! An OBDD is a canonical representation of a Boolean formula: once the

variable ordering is established, equivalent formulas are represented by

the same OBDD:

ϕ1 ↔ ϕ2 ⇐⇒ OBDD(ϕ1) = OBDD(ϕ2)

! equivalence check requires constant time!

=⇒validity check requires constant time! (ϕ↔ ")

=⇒(un)satisfiability check requires constant time! (ϕ↔ ⊥)

! the set of the paths from the root to 1 represent all the models of the

formula

! the set of the paths from the root to 0 represent all the counter-models

of the formula
65



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Exponentiality of OBDD’s

! The size of OBDD’s may grow exponentially wrt. the number of

variables in worst-case

! Consequence of the canonicity of OBDD’s (unless P = co-NP)

! Example: there exist no polynomial-size OBDD representing the

electronic circuit of a bitwise multiplier

! N.B.: the size of intermediate OBDD’s may be bigger than that of the

final one (e.g., inconsistent formula)

66



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Useful Operations over OBDDs

! the equivalence check between two OBDDs is simple

• are they the same OBDD? (=⇒constant time)

! the size of a Boolean composition is up to the product of the size of the

operands: |f op g| = O(|f | · |g|)

f

g

fg

O(|f| |g|)

(but typically much smaller on average).

67



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Boolean quantification

! If v is a Boolean variable, then

∃v.f := f |v=0 ∨ f |v=1

∀v.f := f |v=0 ∧ f |v=1

! Multi-variable quantification: ∃(w1, . . . , wn).f := ∃w1 . . . ∃wn.f

! Example: ∃(b, c).((a ∧ b) ∨ (c ∧ d)) = a ∨ d

! naive expansion of quantifiers to propositional logic may cause a

blow-up in size of the formulae

! OBDD’s handle very efficiently quantification operations

68



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

OBDD’s and Boolean quantification

! OBDD’s handle quantification operations rather efficiently

• if f is a sub-OBDD labeled by variable v, then f |v=1 and f |v=0 are

the “then” and “else” branches of f

fv=1fv=0

. . . . . .

v

=⇒lots of sharing of subformulae!

69



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

OBDD – summary

! Factorize common parts of the search tree (DAG)

! Require setting a variable ordering a priori (critical!)

! Canonical representation of a Boolean formula.

! Once built, logical operations (satisfiability, validity, equivalence)

immediate.

! Represents all models and counter-models of the formula.

! Require exponential space in worst-case

! Very efficient for some practical problems (circuits, symbolic model

checking).

70



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Incomplete SAT techniques: GSAT, WSAT [45, 44]

! Hill-Climbing techniques: GSAT, WSAT

! looks for a complete assignment;

! starts from a random assignment;

! Greedy search: looks for a better “neighbor” assignment

! Avoid local minima: restart & random walk

71



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

The GSAT algorithm

function GSAT(ϕ)

for i := 1 to Max-tries do
µ := rand-assign(ϕ);

for j := 1 to Max-flips do
if (score(ϕ, µ) = 0)

then return True;

else Best-flips := hill-climb(ϕ, µ);

Ai := rand-pick(Best-flips);

µ := flip(Ai, µ);

end
end
return “no satisfying assignment found”.

72



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

The WalkSAT algorithm
Slide contributed by the student Silvia Tomasi

WalkSAT(ϕ,MAX-STEPS,MAX-TRIES, select())
1 for i← 1 to MAX-TRIES

2 do µ← a randomly generated truth assignment;

3 for j ← 1 to MAX-STEPS

4 do if µ satisfies ϕ

5 then return µ;
6 else C ← randomly selected clause unsatisfied under µ;
7 x← variable selected from C according to heuristic select();
8 µ← µ with x flipped;

9 return error “no solution found”

73



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

GSAT & WSAT– summary

! Handle only CNF formulas.

! Incomplete

! Extremely efficient for some (satisfiable) problems.

! Require polynomial space

! Non-CNF Variants: NC-GSAT [42], DAG-SAT [43]

74



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Content

√
Basics on SAT . . . . . . . . . . . . . . . . . . . . . . . .

√
NNF, CNF and conversions . . . . . . . . . . . . . . . . .

√
Basic SAT techniques . . . . . . . . . . . . . . . . . . . .

⇒ Modern SAT Solvers . . . . . . . . . . . . . . . . . . . . .

• Advanced Functionalities: proofs, unsat cores, interpolants

75



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Variants of DPLL

DPLL is a family of algorithms.

! preprocessing: (subsumption, 2-simplification, resolution)

! different branching heuristics

! backjumping

! learning

! restarts

! (horn relaxation)

! ...

76



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Modern DPLL implementations [46, 4, 55, 23]

! Non-recursive: stack-based representation of data structures

! Efficient data structures for doing and undoing assignments

! Perform non-chronological backtracking and learning

! May perform search restarts

! Reason on total assignments

Dramatically efficient: solve industrial-derived problems with ≈ 107

Boolean variables and ≈ 107 clauses

77



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Iterative description of DPLL [46, 55]

Function DPLL (formula: ϕ, assignment & µ) {
status := preprocess(ϕ, µ);
while (1) {

decide next branch(ϕ, µ);
while (1) {

status := deduce(ϕ, µ, η); η is a conflict set
if (status == Sat)

return Sat;
if (status == Conflict) {

blevel := analyze conflict(ϕ, µ, η);
if (blevel == 0)

return Unsat;
else backtrack(blevel,ϕ, µ);

}
else break;

} } }

78



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Iterative description of DPLL [46, 55]

! preprocess(ϕ, µ) simplifies ϕ into an easier equisatisfiable formula (

and updates µ if it is the case)

! decide next branch(ϕ, µ) chooses a new decision literal from ϕ

according to some heuristic, and adds it to µ

! deduce(ϕ, µ, η) performs all deterministic assignments (unit), and

updates ϕ, µ accordingly. If this causes a conflict, η is the subset of µ

causing the conflict (conflict set).

! analyze conflict(ϕ, µ, η) returns the “wrong-decision” level

suggested by η (“0” means that a conflict exists even without

branching)

! backtrack(blevel,ϕ, µ) undoes the branches up to blevel, and

updates ϕ, µ accordingly

79



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Techniques to achieve efficiency in DPLL

! Preprocessing: preprocess the input formula so that to make it easier to

solve

! Look-ahead: exploit information about the remaining search space

• unit propagation

• forward checking (branching heuristics)

! Look-back: exploit information about search which has already taken

place

• Backjumping & learning

! Others

• restarts

• ...

80



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Preprocessing: (sorting plus) subsumption

! Detect and remove subsumed clauses:

ϕ1 ∧ (l2 ∨ l1) ∧ ϕ2 ∧ (l2 ∨ l3 ∨ l1) ∧ ϕ3

⇓
ϕ1 ∧ (l1 ∨ l2) ∧ ϕ2 ∧ ϕ3

81



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Preprocessing: detect & collapse equivalent literals [7]

Repeat:

1. build the implication graph induced by binary clauses

2. detect strongly connected cycles =⇒equivalence classes of literals

3. perform substitutions

4. perform unit and pure literal.

Until (no more simplification is possible).

! Ex:

ϕ1 ∧ (¬l2 ∨ l1) ∧ ϕ2 ∧ (¬l3 ∨ l2) ∧ ϕ3 ∧ (¬l1 ∨ l3) ∧ ϕ4

⇓l1↔l2↔l3

(ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4)[l2 ← l1; l3 ← l1; ]

! Very effective in many application domains.
82



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Preprocessing: resolution (and subsumption) [3]

! Apply some basic steps of resolution (and simplify):

ϕ1 ∧ (l2 ∨ l1) ∧ ϕ2 ∧ (l2 ∨ ¬l1) ∧ ϕ3

⇓resolve

ϕ1 ∧ (l2) ∧ ϕ2 ∧ ϕ3

⇓unit−propagate

(ϕ1 ∧ ϕ2 ∧ ϕ3)[l2 ← "]

83



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Branching heuristics

! Branch is the source of non-determinism for DPLL

=⇒critical for efficiency

! many branch heuristics conceived in literature.

84



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Some example heuristics

! MOMS heuristics: pick the literal occurring most often in the minimal

size clauses

=⇒fast and simple, many variants

! Jeroslow-Wang: choose the literal with maximum

score(l) := Σl∈c & c∈ϕ 2−|c|

=⇒estimates l’s contribution to the satisfiability of ϕ

! Satz [29]: selects a candidate set of literals, perform unit propagation,

chooses the one leading to smaller clause set

=⇒maximizes the effects of unit propagation

! VSIDS [36]: variable state independent decaying sum

• “static”: scores updated only at the end of a branch

• “local”: privileges variable in recently learned clauses
85



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

“Classic” chronological backtracking

! variable assignments (literals) stored in a stack

! each variable assignments labeled as “unit”, “open”, “closed”

! when a conflict is encountered, the stack is popped up to the most

recent open assignment l

! l is toggled, is labeled as “closed”, and the search proceeds.

86



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Classic chronological backtracking – example (1)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

87



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Classic chronological backtracking – example (2)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ...}
(initial assignment)

88



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Classic chronological backtracking – example (3)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12
√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ..., A1}
... (branch on A1)

89



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Classic chronological backtracking – example (4)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12
√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ..., A1, A2, A3}
(unit A2, A3)

90



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Classic chronological backtracking – example (5)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4
√

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12
√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

... A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ..., A1, A2, A3, A4}
(unit A4)

91



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Classic chronological backtracking – example (6)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4
√

c4 : ¬A4 ∨A5 ∨A10
√

c5 : ¬A4 ∨A6 ∨A11
√

c6 : ¬A5 ∨ ¬A6 ×
c7 : A1 ∨A7 ∨ ¬A12

√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

... A5
A6

A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A1¬A41, A12, A13, ..., A1, A2, A3, A4, A5, A6}
(unit A5, A6)=⇒ conflict

92



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Classic chronological backtracking – example (7)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...
A5
A6

A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ...}
=⇒backtrack up to A1

93



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Classic chronological backtracking – example (8)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

¬A1

A5
A6

A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ...,¬A1}
(unit ¬A1)

94



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Classic chronological backtracking – example (9)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12
√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13 ×
...

A7
A8

¬A1

A5
A6

A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ...,¬A1, A7, A8}
(unit A7, A8) =⇒ conflict

95



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Classic chronological backtracking – example (10)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

A7
A8

¬A1

A5
A6

A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ...}
=⇒backtrack to the most recent open branching point

96



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Classic chronological backtracking – example (10)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

A7
A8

¬A1

A5
A6

A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ...}
=⇒lots of useless search before backtracking up to A13!

97



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Classic chronological backtracking: drawbacks

! often the branch heuristic delays the “right” choice

! chronological backtracking always backtracks to the most recent

branching point, even though a higher backtrack could be possible

=⇒ lots of useless search!

98



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Conflict-directed backtracking (backjumping) and learning [4, 46]

! General idea: when a branch µ fails,

1. conflict analysis: reveal the sub-assignment η ⊆ µ causing the failure

(conflict set η)

2. learning: add the conflict clause C
def

= ¬η to the clause set

3. backjumping: use η to decide the point where to backtrack

! may jump back up much more than one decision level in the stack

=⇒may avoid lots of redundant search!!.

! we illustrate two main backjumping & learning strategies:

• the original strategy presented in [46]

• the state-of-the-art 1stUIP strategy [54]

99



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Preliminary: Correspondence between Search trees and Resolution Proofs

In the case of an unsatisfiable formula, the search tree explored by DPLL corresponds

to a (tree) resolution proof of its unsatisfiability.

Given the above, “learning” corresponds to storing intermediate resolution steps

computed during the search.

100



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Example

(B0∨¬B1∨A1)∧ (B0∨B1∨A2)∧ (¬B0∨B1∨A2)∧ (¬B0 ∨ ¬B1)∧ (¬B2 ∨ ¬B4)∧
(¬A2 ∨B2) ∧ (¬A1 ∨B3) ∧B4 ∧ (A2 ∨B5) ∧ (¬B6 ∨ ¬B4) ∧ (B6 ∨ ¬A1) ∧B7

(B1 ∨ B0 ∨ A2)

(B0 ∨ A1 ∨ A2)

(B0 ∨ ¬B1 ∨ A1)

(B6 ∨ A2) (¬B6 ∨ ¬B4)

(A2 ∨ ¬B4) (¬A2 ∨B2)

(¬B4 ∨B2)

(A1 ∨ A2)(¬A1 ∨ B6)

(¬B2 ∨ ¬B4)

(¬B4)B4

⊥

(¬B0 ∨ ¬B1)

(¬B0 ∨ A2)

(B1 ∨ ¬B0 ∨A2)

101



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

The original backjumping and learning strategy of [46]

! Idea: when a branch µ fails,

1. conflict analysis: find the conflict set η ⊆ µ by generating the

conflict clause C
def

= ¬η via resolution from the falsified clause

(conflicting clause)

2. learning: add the conflict clause C to the clause set

3. backjumping: backtrack to the most recent branching point s.t. the

stack does not fully contain η, and then unit-propagate the

unassigned literal on C

102



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Construction of a conflict set: implication graph

! An implication graph is a DAG s.t.:

• each node represents a variable assignment (literal)

• each edge li
c)−→ l is labeled with a clause

• the node of a decision literal has no incoming edges

• all edges incoming into a node l are labeled with the same clause c,

s.t. l1
c)−→ l,...,ln

c)−→ l iff c = ¬l1 ∨ ... ∨ ¬ln ∨ l

(c is said to be the antecedent clause of l)

• when both l and ¬l occur in the graph, we have a conflict.

! Intuition:

• the graph contains l1
c)−→ l,...,ln

c)−→ l iff l has been obtained from

l1, ..., ln by unit propagation on c

• a partition of the graph with all decision literals on one side and the

conflict on the other represents a conflict set
103



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

The original backjumping strategy – example [46] (1)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

104



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

The original backjumping strategy – example (2)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ...}
(initial assignment)

105



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

The original backjumping strategy – example (3)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12
√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

A1

A1

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ..., A1}
... (branch on A1)

106



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

The original backjumping strategy – example (4)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12
√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

A2

A3

c2

c2

c1

A2
A3

A1

A1

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ..., A1, A2, A3}
(unit A2, A3)

107



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

The original backjumping strategy – example (5)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4
√

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12
√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

c3

c3

A4

A4

A2

A3

c2

c2

c1

A2
A3

A1

A1

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ..., A1, A2, A3, A4}
(unit A4)

108



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

The original backjumping strategy – example (6)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4
√

c4 : ¬A4 ∨A5 ∨A10
√

c5 : ¬A4 ∨A6 ∨A11
√

c6 : ¬A5 ∨ ¬A6 ×
c7 : A1 ∨A7 ∨ ¬A12

√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

Conflict!

A5

A6

c4

c6

c6

c5

c4

c5

A5
A6

c3

c3

A4

A4

A2

A3

c2

c2

c1

A2
A3

A1

A1

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A1¬A41, A12, A13, ..., A1, A2, A3, A4, A5, A6}
(unit A5, A6) =⇒ conflict

109



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

The original backjumping strategy – example (7)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4
√

c4 : ¬A4 ∨A5 ∨A10
√

c5 : ¬A4 ∨A6 ∨A11
√

c6 : ¬A5 ∨ ¬A6 ×
c7 : A1 ∨A7 ∨ ¬A12

√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

Conflict!

A5

A6

c4

c6

c6

c5

c4

c5

A5
A6

c3

c3

A4

A4

A2

A3

c2

c2

c1

A2
A3

A1

A1

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

=⇒Conflict set: {¬A9,¬A10,¬A11, A1}
=⇒learn the conflict clause c10 := A9 ∨A10 ∨ A11 ∨ ¬A1

110



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Implementation of the implication graph

! an implication graph is implemented by tagging each non-decision literal

in the stack with its antecedent clause

! (the partition representing) a conflict set is constructed from the

conflict by traversing backwards the implication graph

! a conflict set can be constructed starting from the conflicting clause,

each time resolving the current clause with the antecedent clause of one

of its literals l

(undo the unit propagation of l)

111



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Building a conflict set/clause by resolution

1. C := conflicting clause

2. repeat

(a) resolve current clause C with the antecedent clause of the last

unit-propagated literal l in C

until C verifies some given termination criteria

(e.g., until C contains only decision literals)

¬A1 ∨ A2

¬A1 ∨ A3 ∨ A9

¬A2 ∨ ¬A3 ∨ A4

¬A4 ∨ A5 ∨ A10

¬A4 ∨ A6 ∨ A11

Conflicting cl.
︷ ︸︸ ︷
¬A5 ∨ ¬A6

¬A4 ∨ ¬A5 ∨ A11
(A6

¬A4 ∨ A10 ∨ A11
(A5)

¬A2 ∨ ¬A3 ∨ A10 ∨ A11
(A4)

¬A2 ∨ ¬A1 ∨ A9 ∨ A10 ∨ A11
(A3)

¬A1 ∨ A9 ∨ A10 ∨ A11
(A2)

112



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

The original backjumping strategy – example (7)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4
√

c4 : ¬A4 ∨A5 ∨A10
√

c5 : ¬A4 ∨A6 ∨A11
√

c6 : ¬A5 ∨ ¬A6 ×
c7 : A1 ∨A7 ∨ ¬A12

√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

Conflict!

A5

A6

c4

c6

c6

c5

c4

c5

A5
A6

c3

c3

A4

A4

A2

A3

c2

c2

c1

A2
A3

A1

A1

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

=⇒Conflict set: {¬A9,¬A10,¬A11, A1}
=⇒learn the conflict clause c10 := A9 ∨A10 ∨ A11 ∨ ¬A1

113



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

The original backjumping strategy – example (8)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

c10 : A9 ∨A10 ∨A11 ∨ ¬A1

...

A2
A3
A4
A5
A6

¬A9

¬A10

A12

¬A11

¬A10

¬A11

A12

A13

A1

¬A9

A13

{...,¬A9,¬A10,¬A11, A12, A13, ...}
=⇒backtrack up to A1

114



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

The original backjumping strategy – example (9)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

c10 : A9 ∨A10 ∨A11 ∨ ¬A1
√

...

¬A1

c10

c10

c10

¬A1

A2
A3
A4
A5
A6

¬A9

¬A10

A12

¬A11

¬A10

¬A11

A12

A13

A1

¬A9

A13

{...,¬A9,¬A10,¬A11, A12, A13, ...,¬A1}
(unit ¬A1)

115



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

The original backjumping strategy – example (10)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12
√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

c10 : A9 ∨A10 ∨A11 ∨ ¬A1
√

...

A7
A8

A7

A8

c8

c7

c7

¬A1

c10

c10

c10

¬A1

A2
A3
A4
A5
A6

¬A9

¬A10

A12

¬A11

¬A10

¬A11

A12

A13

A1

¬A9

A13

{...,¬A9,¬A10,¬A11, A12, A13, ...,¬A1, A7, A8}
(unit A7, A8)

116



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

The original backjumping strategy – example (11)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12
√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13 ×
c10 : A9 ∨A10 ∨A11 ∨ ¬A1

√

...

c9c9

c9

Conflict!

A7
A8

A7

A8

c8

c7

c7

¬A1

c10

c10

c10

¬A1

A2
A3
A4
A5
A6

¬A9

¬A10

A12

¬A11

¬A10

¬A11

A12

A13

A1

¬A9

A13

{...,¬A9,¬A10,¬A11, A12, A13, ...,¬A1, A7, A8}
Conflict!

117



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

The original backjumping strategy – example (12)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12
√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13 ×
c10 : A9 ∨A10 ∨A11 ∨ ¬A1

√

...

c9c9

c9

Conflict!

A7
A8

A7

A8

c8

c7

c7

¬A1

c10

c10

c10

¬A1

A2
A3
A4
A5
A6

¬A9

¬A10

A12

¬A11

¬A10

¬A11

A12

A13

A1

¬A9

A13

=⇒conflict set: {¬A9,¬A10,¬A11, A12, A13} .

=⇒learn C11 := A9 ∨ A10 ∨ A11 ∨ ¬A12 ∨ ¬A13
118



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

The original backjumping strategy – example (13)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

c10 : A9 ∨A10 ∨A11 ∨ ¬A1

c11 : A9 ∨A10 ∨A11 ∨ ¬A12 ∨ ¬A13

...

A7
A8

¬A1

A2
A3
A4
A5
A6

¬A9

¬A10

A12

¬A11

¬A10

¬A11

A12

A13

A1

¬A9

=⇒ backtrack to A13 =⇒ Lots of search saved!!!!!!!!!!
119



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

The original backjumping strategy – example (14)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
√

c10 : A9 ∨A10 ∨A11 ∨ ¬A1
√

c11 : A9 ∨A10 ∨A11 ∨ ¬A12 ∨ ¬A13
√

...

¬A1
¬A13

c10

c10

¬A1

c11

c11

c11

c11

c10

¬A13
A7
A8

¬A1
A2
A3
A4
A5
A6

¬A10

¬A11

A12

A13

A1

¬A9

¬A9

¬A10

A12

¬A11

=⇒ backtrack to A13, set A13 and A1 to ⊥,...
120



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Learning [4, 46]

Idea: When a conflict set C is revealed, then ¬C added to ϕ

=⇒DPLL will no more generate an assignment containing C: when

|C| − 1 literals in C are assigned, the other is set ⊥

Drastic pruning of the search!!!

121



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Learning – example (cont.)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
√

c10 : A9 ∨A10 ∨A11 ∨ ¬A1
√

c11 : A9 ∨A10 ∨A11 ∨ ¬A12 ∨ ¬A13
√

...

¬A9

¬A11

¬A10

¬A1
¬A13

A12

¬A1
¬A13

c10

c10

¬A1

c11

c11

c11

c11

c10

¬A13
A7
A8

¬A1
A2
A3
A4
A5
A6

¬A10

¬A11

A12

A13

A1

¬A9

¬A9

¬A10

A12

¬A11

=⇒Unit: {¬A1,¬A13}
122



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

State-of-the-art backjumping and learning [54]

! Idea: when a branch µ fails,

1. conflict analysis: find the conflict set η ⊆ µ by generating the

conflict clause C
def

= ¬η via resolution from the falsified clause,

according to the 1stUIP strategy

2. learning: add the conflict clause C to the clause set

3. backjumping: backtrack to the highest branching point s.t. the stack

contains all-but-one literals in η, and then unit-propagate the

unassigned literal on C

123



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

State-of-the-art backjumping and learning: intuitions

! Backjumping: allows for climbing up to many decision levels in the stack

=⇒may avoid lots of redundant search

• intuition: “go back to the oldest decision where you’d have done

something different if only you had known C”

! Learning: in future branches, when all-but-one literals in η are assigned,

the remaining literal is assigned to false by unit-propagation:

=⇒avoid finding the same conflict again

• intuition: “when you’re about to repeat the mistake, do the opposite

of the last step”

124



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

State-of-the-art in backjumping & learning [54]

! A node l in an implication graph is an unique implication point (UIP)

for the last decision level iff any path from the last decision node to

both the conflict nodes passes through l.

• the most recent decision node is an UIP (last UIP)

• all other UIP’s have been assigned after the most recent decision

125



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

State-of-the-art in backjumping & learning [54]

First Unique Implication Point (1st UIP) strategy:

! 1st UIP strategy: adopt the partition involving the 1st UIP for the last

decision level.

! corresponds to consider the first clause encountered containing one

literal of the current level (1st UIP).

¬A4 ∨ A5 ∨ A10

¬A4 ∨ A6 ∨ A11

Conflicting cl.︷ ︸︸ ︷
¬A5 ∨ ¬A6

¬A4 ∨ ¬A5 ∨A11
(A6)

¬A4︸︷︷︸
1st UIP

∨A10 ∨ A11
(A5)

126



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

1st UIP strategy – example (7)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4
√

c4 : ¬A4 ∨A5 ∨A10
√

c5 : ¬A4 ∨A6 ∨A11
√

c6 : ¬A5 ∨ ¬A6 ×
c7 : A1 ∨A7 ∨ ¬A12

√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

last UIP

1st UIP

Conflict!

A5

A6

c4

c6

c6

c5

c4

c5

A5
A6

c3

c3

A4

A4

A2

A3

c2

c2

c1

A2
A3

A1

A1

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

=⇒Conflict set: {¬A10,¬A11, A4}, learn c10 := A10 ∨ A11 ∨ ¬A4

127



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

1st UIP strategy and backjumping [54]

! The added conflict clause states the reason for the conflict

! The procedure backtracks to the most recent decision level of the

variables in the conflict clause which are not the UIP.

! then the conflict clause forces the negation of the UIP by unit

propagation.

E.g.: c10 := A10 ∨A11 ∨ ¬A4

=⇒backtrack to A11, then assign ¬A4

128



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

1st UIP strategy – example (7)

c1 : ¬A1 ∨A2
√

c2 : ¬A1 ∨A3 ∨A9
√

c3 : ¬A2 ∨ ¬A3 ∨A4
√

c4 : ¬A4 ∨A5 ∨A10
√

c5 : ¬A4 ∨A6 ∨A11
√

c6 : ¬A5 ∨ ¬A6 ×
c7 : A1 ∨A7 ∨ ¬A12

√

c8 : A1 ∨A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

last UIP

1st UIP

Conflict!

A5

A6

c4

c6

c6

c5

c4

c5

A5
A6

c3

c3

A4

A4

A2

A3

c2

c2

c1

A2
A3

A1

A1

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

=⇒Conflict set: {¬A10,¬A11, A4}, learn c10 := A10 ∨ A11 ∨ ¬A4

129



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

1st UIP strategy – example (8)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10

c5 : ¬A4 ∨A6 ∨A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

c10 : A10 ∨A11 ∨ ¬A4

... A5
A6

A4

A2
A3

A1

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

=⇒backtrack up to A11 =⇒ {...,¬A9,¬A10,¬A11}
130



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

1st UIP strategy – example (9)

c1 : ¬A1 ∨A2

c2 : ¬A1 ∨A3 ∨A9

c3 : ¬A2 ∨ ¬A3 ∨A4

c4 : ¬A4 ∨A5 ∨A10
√

c5 : ¬A4 ∨A6 ∨A11
√

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨A7 ∨ ¬A12

c8 : A1 ∨A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

c10 : A10 ∨A11 ∨ ¬A4
√

...

¬A4

c9

c9

¬A4

A5
A6

A4

A2
A3

A1

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

=⇒ unit propagate ¬A4 =⇒ {...,¬A9,¬A10,¬A11, A4}...
131



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

1st UIP strategy and backjumping – intuition

! An UIP is a single reason implying the conflict at the current level

! substituting the 1st UIP for the last UIP

• does not enlarge the conflict

• may require involving less decision literals from other levels

! by backtracking to the most recent decision level of the variables in the

conflict clause which are not the UIP:

• jump higher

• allows for assigning (the negation of) the UIP as high as possible in

the search tree.

132



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Remark: the “quality” of conflict sets

! Different ideas of “good” conflict set

• Backjumping: if causes the highest backjump (“local” role)

• Learning: if causes the maximum pruning (“global” role)

! Many different strategies implemented (see, e.g., [4, 46, 54])

133



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Drawbacks of Learning

! Prunes drastically the search.

! Problem: may cause a blowup in space

=⇒techniques to drop learned clauses when necessary

• according to their size

• according to their activity.

134



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Restarts [24]

(according to some strategy) restart DPLL

! abandon the current search tree and reconstruct a new one

! The clauses learned prior to the restart are still there after the restart

and can help pruning the search space

! may significantly reduce the overall search space

135



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

What is missing?

...Many things:

1. Data structures for effective BCP (binary clauses, two literal watching,

BCP ordering)

2. Forgetting policies

3. Effective use of L1 and L2 cache

4. Parallel and manycore SAT solvers

5. Phase saving

6. . . .

136



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Content

√
Basics on SAT . . . . . . . . . . . . . . . . . . . . . . . .

√
NNF, CNF and conversions . . . . . . . . . . . . . . . . .

√
Basic SAT techniques . . . . . . . . . . . . . . . . . . . .

√
Modern SAT Solvers . . . . . . . . . . . . . . . . . . . . .

⇒ Advanced Functionalities: proofs, unsat cores, interpolants

137



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Advanced functionalities

Advanced SAT functionalities (very important in formal verification):

# Building proofs of unsatisfiability

# Extracting unsatisfiable Cores

138



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Building Proofs of Unsatisfiability

# When ϕ is unsat, it is very important to build a (resolution) proof of unsatisfiability:

• to verify the result of the solver

• to understand a “reason” for unsatisfiability

• to build unsatisfiable cores and interpolants

# can be built by keeping track of the resolution steps performed when constructing

the conflict clauses.

139



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Building Proofs of Unsatisfiability

# recall: each conflict clause Ci learned is computed from the conflicting clause Ci−k

by backward resolving with the antecedent clause of one literal

C1

C2

Ck

conflicting clause︷ ︸︸ ︷
Ci−k
....

Ci−2

Ci−1

Ci︸︷︷︸
conflict clause

# C1, ..., Ck, and Ci−k can be original or learned clauses

# each resolution (sub)proof can be easily tracked:

i i-k -> i-k-1

...

2 i-2 -> i-1

1 i-1 -> i
140



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Building Proofs of Unsatisfiability

# ... in particular, if ϕ is unsatisfiable, the last step produces “false” as conflict clause:

C1

C2

Ck

conflicting clause︷ ︸︸ ︷
Ci−k
....

Ci−2

Ci−1

⊥

# note: C1 = l, Ci−1 = ¬l for some literal l

# C1, ..., Ck, and Ci−k can be original or learned clauses...

141



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Building Proofs of Unsatisfiability

Starting from the previous proof of unsatisfiability, repeat recursively:

# for every learned leaf clause Ci, substitute Ci with the resolution proof generating it

until all leaf clauses are original clauses

C11 ....

C1i1 .... C1ij1i

....
C1i .... C1j1

....
C1

C2

Ck1 .... Ckjk

....
Ck

Ci−k1 .... Ci−kji−k

....
Ci−k

....
Ci−2

Ci−1

⊥

=⇒ we obtain a resolution proof of unsatisfiability for (a subset of) the clauses in ϕ
142



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Building Proofs of Unsatisfiability: example

(B0∨¬B1∨A1)∧ (B0∨B1∨A2)∧ (¬B0∨B1∨A2)∧ (¬B0 ∨ ¬B1)∧ (¬B2 ∨ ¬B4)∧
(¬A2 ∨B2) ∧ (¬A1 ∨B3) ∧B4 ∧ (A2 ∨B5) ∧ (¬B6 ∨ ¬B4) ∧ (B6 ∨ ¬A1) ∧B7

(B1 ∨ B0 ∨ A2)

(B0 ∨ A1 ∨ A2)

(B0 ∨ ¬B1 ∨ A1)

(B6 ∨ A2) (¬B6 ∨ ¬B4)

(A2 ∨ ¬B4) (¬A2 ∨B2)

(¬B4 ∨B2)

(A1 ∨ A2)(¬A1 ∨ B6)

(¬B2 ∨ ¬B4)

(¬B4)B4

⊥

(¬B0 ∨ ¬B1)

(¬B0 ∨ A2)

(B1 ∨ ¬B0 ∨A2)

143



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Extraction of unsatisfiable cores

# Problem: given a unsatisfiable set of clauses, extract from it a (possibly

small/minimal/minimum) unsatisfiable subset

# Lots of literature on the topic [56, 30, 32, 38, 53, 25, 19, 6]

# We recognize two main approaches:

• Proof-based approach [56]: byproduct of finding a resolution proof

• Assumption-based approach [30]: use extra variables labeling clauses

# many optimizations for further reducing the size of the core:

• repeat the process up to fixpoit

• remove clauses one-by one, until satisfiability is obtained

• combinations of the two processed above

• ...

144



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

The proof-based approach to unsat-core extraction
Unsat core: the set of leaf clauses of a resolution proof

(B0 ∨ ¬B1 ∨A1)∧(B0 ∨B1 ∨A2)∧(¬B0 ∨B1 ∨A2)∧(¬B0 ∨ ¬B1)∧(¬B2 ∨ ¬B4)∧
(¬A2 ∨B2) ∧ (¬A1 ∨B3) ∧B4 ∧ (A2 ∨B5) ∧ (¬B6 ∨ ¬B4) ∧ (B6 ∨ ¬A1) ∧B7

(B1 ∨ B0 ∨ A2)

(B0 ∨ A1 ∨ A2)

(B0 ∨ ¬B1 ∨ A1)

(B6 ∨A2) (¬B6 ∨ ¬B4)

(A2 ∨ ¬B4) (¬A2 ∨ B2)

(¬B4 ∨ B2)

(A1 ∨A2)(¬A1 ∨B6)

(¬B2 ∨ ¬B4)

(¬B4)B4

⊥

(¬B0 ∨ ¬B1)

(¬B0 ∨ A2)

(B1 ∨ ¬B0 ∨ A2)

145



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

The assumption-based approach to unsat-core extraction

Based on the following process:

1. each clause Ci is substituted by Si → Ci, s.t. Si fresh “selector” variable

2. before starting the search each Si is forced to true.

3. final conflict clause at dec. level 0:
∨

j ¬Sj

=⇒{Cj}j is the unsat core

146



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

The assumption-based approach to unsat-core extraction

(B0 ∨ ¬B1 ∨A1) ∧ (B0 ∨B1 ∨A2) ∧ (¬B0 ∨B1 ∨A2)∧
(¬B0 ∨ ¬B1) ∧ (¬B2 ∨ ¬B4) ∧ (¬A2 ∨B2) ∧ (¬A1 ∨B3)∧
B4 ∧ (A2 ∨B5) ∧ (¬B6 ∨ ¬B4) ∧ (B6 ∨ ¬A1) ∧B7

add selector variables:
S1 → (B0 ∨ ¬B1 ∨A1) ∧ S2 → (B0 ∨B1 ∨A2) ∧ S3 → (¬B0 ∨B1 ∨A2)∧
S4 → (¬B0 ∨ ¬B1) ∧ S5 → (¬B2 ∨ ¬B4) ∧ S6 → (¬A2 ∨B2) ∧ (S7 → ¬A1 ∨B3)∧
S8 → B4 ∧ S9 → (A2 ∨B5) ∧ S10 → (¬B6 ∨ ¬B4) ∧ S11 → (B6 ∨ ¬A1) ∧ S12 → B7

The conflict analysis returns:

¬S1 ∨ ¬S2 ∨ ¬S3 ∨ ¬S4 ∨ ¬S5 ∨ ¬S6 ∨ ¬S8 ∨ ¬S10 ∨ ¬S11,

corresponding to the unsat core:

(B0 ∨ ¬B1 ∨A1) ∧ (B0 ∨B1 ∨A2) ∧ (¬B0 ∨B1 ∨A2)∧
(¬B0 ∨ ¬B1) ∧ (¬B2 ∨ ¬B4) ∧ (¬A2 ∨B2)∧
B4 ∧ (¬B6 ∨ ¬B4) ∧ (B6 ∨ ¬A1)

147



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

References

[1] P. A. Abdullah, P. Bjesse, and N. Een. Symbolic Reachability Analysis based on SAT-Solvers. In

Sixth Int.nl Conf. on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS’00), 2000.

[2] A. Armando and E. Giunchiglia. Embedding Complex Decision Procedures inside an Interactive

Theorem Prover. Annals of Mathematics and Artificial Intelligence, 8(3–4):475–502, 1993.

[3] F. Bacchus and J. Winter. Effective Preprocessing with Hyper-Resolution and Equality Reduction.

In Proc. Sixth International Symposium on Theory and Applications of Satisfiability Testing, 2003.

[4] R. J. Bayardo, Jr. and R. C. Schrag. Using CSP Look-Back Techniques to Solve Real-World SAT

instances. In Proc. AAAI’97, pages 203–208. AAAI Press, 1997.

[5] A. Biere, A. Cimatti, E. M. Clarke, and Yunshan Zhu. Symbolic Model Checking without BDDs.

In Proc. TACAS’99, pages 193–207, 1999.

[6] Booleforce, http://fmv.jku.at/booleforce/.

[7] R. Brafman. A simplifier for propositional formulas with many binary clauses. In Proc. IJCAI01,

2001.

[8] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions on

Computers, C-35(8):677–691, August 1986.

[9] A. Cimatti, M. Pistore, M. Roveri, and R. Sebastiani. Improving the Encoding of LTL Model

Checking into SAT. In Proc. VMCAI’02, volume 2294 of LNCS. Springer, January 2002.
148



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

[10] S. A. Cook. The complexity of theorem proving procedures. In 3rd Annual ACM Symposium on

the Theory of Computation, pages 151–158, 1971.

[11] M. Davis, G. Longemann, and D. Loveland. A machine program for theorem proving. Journal of

the ACM, 5(7), 1962.

[12] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of the ACM,

7:201–215, 1960.

[13] T. Boy de la Tour. Minimizing the Number of Clauses by Renaming. In Proc. of the 10th

Conference on Automated Deduction, pages 558–572. Springer-Verlag, 1990.

[14] E. Friedgut. Sharp thresholds of graph properties, and the k-sat problem. Journal of the

American Mathematical Society, 12(4), 1998.

[15] M. Ernst, T. Millstein, and D. Weld. Automatic SAT-compilation of planning problems. In

Proc. IJCAI-97, 1997.

[16] M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman and Company, New York,

1979.

[17] A. Van Gelder. A satisfiability tester for non-clausal propositional calculus. Information and

Computation, 79:1–21, October 1988.

[18] I. P. Gent, E. MacIntyre, P. Prosser, and T. Walsh. The constrainedness of search. In

Proceedings of AAAI-96, pages 246–252, Menlo Park, 1996. AAAI Press / MIT Press.

[19] R. Gershman, M. Koifman, and O. Strichman. Deriving Small Unsatisfiable Cores with

Dominators. In Proc. CAV’06, volume 4144 of LNCS. Springer, 2006.
149



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

[20] E. Giunchiglia, A. Massarotto, and R. Sebastiani. Act, and the Rest Will Follow: Exploiting

Determinism in Planning as Satisfiability. In Proc. AAAI’98, pages 948–953, 1998.

[21] E. Giunchiglia, M. Narizzano, A. Tacchella, and M. Vardi. Towards an Efficient Library for SAT: a

Manifesto. In Proc. SAT 2001, Electronics Notes in Discrete Mathematics. Elsevier Science.,

2001.

[22] E. Giunchiglia and R. Sebastiani. Applying the Davis-Putnam procedure to non-clausal formulas.

In Proc. AI*IA’99, volume 1792 of LNAI. Springer, 1999.

[23] E. Giunchiglia and A. Tacchella, editors. Sixth International Conference on Theory and

Applications of Satisfiability Testing , volume 2919 of LNCS. Springer, May 2003.

[24] C. Gomes, B. Selman, and H. Kautz. Boosting Combinatorial Search Through Randomization. In

Proceedings of the Fifteenth National Conference on Artificial Intelligence, 1998.

[25] J. Huang. MUP: a minimal unsatisfiability prover. In Proc. ASP-DAC ’05. ACM Press, 2005.

[26] H. Kautz, D. McAllester, and B. Selman. Encoding Plans in Propositional Logic. In Proceedings

International Conference on Knowledge Representation and Reasoning. AAAI Press, 1996.

[27] H. Kautz and B. Selman. Planning as Satisfiability. In Proc. ECAI-92, pages 359–363, 1992.

[28] S. Kirkpatrick and B. Selman. Critical behaviour in the satisfiability of random boolean

expressions. Science, 264:1297–1301, 1994.

[29] Chu Min Li and Anbulagan. Heuristics based on unit propagation for satisfiability problems. In

Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI-97), pages

366–371, 1997.
150



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

[30] I. Lynce and J. P. Marques Silva. On computing minimum unsatisfiable cores. In SAT, 2004.

[31] Ken McMillan. Interpolation and SAT-based model checking. In Proc. CAV, 2003.

[32] Ken McMillan and Nina Amla. Automatic abstraction without counterexamples. In Proc. of

TACAS, 2003.

[33] Kenneth L. McMillan. An interpolating theorem prover. Theor. Comput. Sci., 345(1):101–121,

2005.

[34] D. Mitchell, B. Selman, and H. Levesque. Hard and Easy Distributions of SAT Problems. In

Proc. of the 10th National Conference on Artificial Intelligence, pages 459–465, 1992.

[35] M.Mezard, G.Parisi, and R. Zecchina. Analytic and Algorithmic Solution of Random Satisfiability

Problems. Science, 297(812), 2002.

[36] M. W. Moskewicz, C. F. Madigan, Y. Z., L. Zhang, and S. Malik. Chaff: Engineering an efficient

SAT solver. In Design Automation Conference, 2001.

[37] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Abstract DPLL and abstract DPLL

modulo theories. In F. Baader and A. Voronkov, editors, Proceedings of the 11th International

Conference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR’04),

Montevideo, Uruguay, volume 3452 of Lecture Notes in Computer Science, pages 36–50.

Springer, 2005.

[38] Y. Oh, M. N. Mneimneh, Z. S. Andraus, K. A. Sakallah, and I. L. Markov. Amuse: A

Minimally-Unsatisfiable Subformula Extractor. In Proc. DAC’04. ACM/IEEE, 2004.

[39] D.A. Plaisted and S. Greenbaum. A Structure-preserving Clause Form Translation. Journal of
151



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

Symbolic Computation, 2:293–304, 1986.

[40] Pavel Pudlák. Lower bounds for resolution and cutting planes proofs and monotone

computations. J. of Symb. Logic, 62(3), 1997.

[41] Alan Robinson. A machine-oriented logic based on the resolution principle. Journal of the ACM,

12:23–41, 1965.

[42] R. Sebastiani. Applying GSAT to Non-Clausal Formulas. Journal of Artificial Intelligence

Research, 1:309–314, 1994.

[43] B. Selman and H. Kautz. Domain-Independent Extension to GSAT: Solving Large Structured

Satisfiability Problems. In Proc. of the 13th International Joint Conference on Artificial

Intelligence, pages 290–295, 1993.

[44] B. Selman, H. Kautz, and B. Cohen. Local Search Strategies for Satisfiability Testing. In Cliques,

Coloring, and Satisfiability, volume 26 of DIMACS, pages 521–532, 1996.

[45] B. Selman, H. Levesque., and D. Mitchell. A New Method for Solving Hard Satisfiability

Problems. In Proc. of the 10th National Conference on Artificial Intelligence, pages 440–446,

1992.

[46] J. P. M. Silva and K. A. Sakallah. GRASP - A new Search Algorithm for Satisfiability. In Proc.

ICCAD’96, 1996.

[47] R. M. Smullyan. First-Order Logic. Springer-Verlag, NY, 1968.

[48] O. Strichmann. Tuning SAT checkers for Bounded Model Checking. In Proc. CAV00, volume

1855 of LNCS, pages 480–494. Springer, 2000.
152



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

[49] C. Tinelli. A DPLL-based Calculus for Ground Satisfiability Modulo Theories. In Proc. JELIA-02,

volume 2424 of LNAI, pages 308–319. Springer, 2002.

[50] C. P. Williams and T. Hogg. Exploiting the deep structure of constraint problems. Artificial

Intelligence, 70:73–117, 1994.

[51] P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta. Combining Decision Diagrams and SAT

Procedures for Efficient Symbolic Model Checking. In Proc. CAV2000, volume 1855 of LNCS,

pages 124–138, Berlin, 2000. Springer.

[52] H. Zhang and M. Stickel. Implementing the Davis-Putnam algorithm by tries. Technical report,

University of Iowa, August 1994.

[53] J. Zhang, S. Li, and S. Shen. Extracting Minimum Unsatisfiable Cores with a Greedy Genetic

Algorithm. In Proc. ACAI, volume 4304 of LNCS. Springer, 2006.

[54] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Efficient conflict driven learning in a

boolean satisfiability solver. In ICCAD ’01: Proceedings of the 2001 IEEE/ACM international

conference on Computer-aided design, pages 279–285, Piscataway, NJ, USA, 2001. IEEE Press.

[55] L. Zhang and S. Malik. The quest for efficient boolean satisfiability solvers. In Proc. CAV’02,

number 2404 in LNCS, pages 17–36. Springer, 2002.

[56] Lintao Zhang and Sharad Malik. Extracting small unsatisfiable cores from unsatisfiable boolean

formula. In Proc. of SAT, 2003.

153



4th International Seminar on New Issues in Artificial Intelligence c©Thanks to Roberto Sebastiani

DISCLAIMER

The list of references above is by no means intended to be all-inclusive. The author of these slides

apologizes both with the authors and with the readers for all the relevant works which are not cited

here.

The papers (co)authored by the author of these slides are availlable at:

http://www.dit.unitn.it/~rseba/publist.html.

Related web sites:

• Combination Methods in Automated Reasoning

http://combination.cs.uiowa.edu/

• SMT-LIB - The Satisfiability Modulo Theories Library

http://goedel.cs.uiowa.edu/smtlib/

• SATLive! - Up-to-date links for SAT

http://www.satlive.org/index.jsp

• SATLIB - The Satisfiability Library

http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/

154


