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Evolving
Intelligent Systems

Lecture 3: Applications

Dr. Plamen Angelov

Director Intel.& Robotic Systems Program
Dept of Communications Systems
InfoLab21, Lancaster University, UK
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Lecture 3 Applications

1. Process industries (eSensors)

a) predicting quality in oil refineries (CEPSA)

b) modelling polymerisation (The Dow 

Chemicals, TX)

2. Robotics, SLAM, landmarks

3. Security and video-analytics

4. Automotive industry (Dr. D. Filev)
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Recommended Readings

• P. Angelov, Evolving Rule-based Models: A Tool for 

Design of Flexible Adaptive Systems, Physica-Verlag: 
Heidelberg, February 2002, ISBN 3-7908-1457-1.

• N. Kasabov, Evolving Connectionist Systems: Methods 
and Applications in BioInformatics, Brain Study and 

Intelligent Machines, Springer, London, 2003, ISBN: 

1-85233-400-2.

• P. Angelov, D. Filev and N. Kasabov (Eds.), Evolving 

Intelligent Systems: Methodology and Applications, 
484pp., John Willey and Sons, IEEE Press Series on 

Computational Intelligence, April 2010, ISBN: 978-0-

470-28719-4
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Applications of eSensors

• Quality of oil refinery products (CEPSA-
Total, Spain; Dr. J. Macias)

• Polypropylene and other chemical 
products (The Dow Chemical, TX, USA; 
Dr. A. Kordon)

• NOx emissions in exhaust gases of car 
engines estimation (Dr. E. Lughofer, 
University of Linz, Austria
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Inferential (soft) Sensors

� Inferential (soft) sensors – since ‘80s in 

chemical, process industries etc.

� Product quality on-line monitoring

� ‘Black-box methods’, NN, PCA, PLS, SVM

� They often provide a valuable advantage over 

the conventional approaches that rely on 

manual intervention and laboratory tests

2 February 2010 6

Soft/Intelligent Sensors

� However, they are costly to build and maintain:

� the operation of industrial plants is subjected to 
a continuous change:

� raw materials alter in quality

� catalysts deactivate and must be exchanged, and

� equipment is subject to wear or contamination and 

has to be maintained or replaced. 

� Even minor process changes outside the 
conditions used off-line can lead to 
performance deterioration which may become 
inadequate to the changing environment.
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Soft/Intelligent Sensors

� This requires maintenance and frequent model/ 
sensor re-design, including derivation of entirely 
new model structure and human expert 
involvement as well as re-calibration

� As a result, maintenance costs form a significant 
proportion of the life-cycle costs

� Another serious deficiency of current soft 
sensors is their inability to incorporate process 
knowledge
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eSensor – the concept

� eSensor (evolving intelligent sensor) concept is 
based on eTS (including on-line inputs selection)

Rule-base
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eSensor flow chart

3rd International seminar on new issues 

in AI, February 2010, Carlos III, Madrid

1010

eTS on FPGA - XtremeDSP
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Monitoring Quality of 
products in oil refineries
courtesy of Dr. J. M. Hernandez, CEPSA, Spain

• Crude Distillation Tower Quality Control
• ASTM D86, Abel In flammability.

• Lab samples Once a day

• Crude Switching 2-3 days

• On-line analyzers availability

• Statistical methods
• To cope for differences Lab / On-line analyzers

• To reduce monitoring and unit control budget
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State of the art 2

� Statistical models used

• Based on simplified engineering models of the 
tower. Strong but do not account for instrument 
readings drifts and failures.

• Multivariate calibration models, PLS. Strong, 
protected versus co linearity but do not solve 
adaptation either.

• Feed forward Neural Networks. Very powerful 
Black box models but difficult to explain to the 
operators and process engineers. Recalibration 
required.

� Need for adaptation
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Quality monitoring 
and control
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ASTM D86
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Inflammability Test
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Industry’s          
Application Requirements

� Strong (good prediction, low error) model

� Safe on prediction outside calibration horizon

� Able to adapt to instrument drifts, crude 
quality characteristics, etc.

� Automatic adaptation

� Easy to explain to operators and process 
engineers
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Data Characteristics

• Once a day lab sample and Lab data results in the same 

day few hours later

• Hourly average instrument readings of temperatures, 
flow rates and pressures of the distillation tower.

• Data for Calibration and prediction 450 samples or days. 

More than one year operation to account for mostly 
crudes processed at the refinery and have instruments 

drifts, shutdowns, etc.

• The data is taken from normal operation values, i.e. it 
has a narrow operating window that makes it difficult 

for prediction.

• Process dynamics in raw data
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Crude Oil Distillation Tower

• 80000 b/d, 47 trays, 5.2m top diameter, 2.4m bottoms.

• 5 side streams

• Heavy Naphtha (HN)

• Kerosene (KN)

• Light Gas oil (LGO)

• Medium Gas oil (MGO)

• Heavy Gas oil (HGO).

• Side stream strippers with steam and bottoms stripping steam

• Top, bottoms and Side stream Temperatures

• Pressure Top and Reflux drum

• Side stream Flow rates 

• Steam flow rates

• Crude density
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Properties of interest

• 95% ASTM D86 heavy naphtha, depends on

• The pressure of the tower, p, kg/cm2g

• The amount of the product taking off, P, %

• The density of the crude, d, g/l

• Temperature of the column overhead, Tco, oC

• Temperature of the naphtha extraction, Tne, oC

• 95% ASTM D86 kerosene

• The pressure of the tower, p, kg/cm2

• Amount of product taking off, naphtha and kerosene oil, P, %

• Density of the crude, d, g/l

• Temperature of the column overhead, Tco, oC

• Steam introduced in GOL stripper, SGK, kg/h

• Temperature of the Kerosene Extraction, Tke, oC

• Temperature of the Naphtha Extraction, Tne, oC
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Process Units Distillation
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Properties of interest

• Abel in flammability KNO

• The pressure of the tower, p, kg/cm2g

• Amount of product taking off, P, %

• Density of the crude, d, g/l

• Temperature of the column overhead, Tco, oC

• Temperature of the Naphtha Extraction, Tne, oC

• Steam introduced in Kerosene stripper, SkK, kg/h
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Properties of interest

• 85% ASTM D86 GOL

• The pressure of the tower, p, kg/cm2g

• Amount of product taking off, P, %

• Density of the crude, ρ, g/l

• Temperature of the column overhead, Tco, oC

• Steam introduced in GOM stripper, SgG, kg/h,

• Temperature of the GOL Extraction, TGOL, oC

• Temperature of the Kerosene Extraction, Tke, oC

• Temperature of the Naphtha Extraction, Tne, oC
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Experimental results:
Oil refinery

Results for Predicting Quality of the Crude Oil Distillation

Method Rules inputs RMSE e

Neural Network (off-line) - 7 2.87 3.43

ANFIS (off-line) 29 7 2.15 2.25

DENFIS 29 7 2.46 -

eSensor (A+B) 5 7 2.29 2.37

eSensor (A,B,F) 9 5 2.30 2.38

eSensor (A-E) 3 7 2.19 2.28

Full eSensor (A-F) 3 6 2.18 2.27
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Experimental results:
Oil refinery
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Final Rule base in the Abel inflammability test

R
1
: IF (P is 5.4%) AND (Tco is 323.3 oC) AND …AND (Tne is 126.8 oC) 

THEN (A1=20.2 + 92.7P + … + 0.12 Tne) 

R
2
: IF (P is 11.7%) AND (Tco is 365.0 oC)AND …AND (Tne is 147.6 oC)

THEN (A2=42.1 + 63.4P + … + 0.10 Tne) 

R
3
: IF (P is 5.4%) AND (Tco is 335.14 oC) AND…AND (Tne is 136.1 oC) 

THEN (A3=25.2 + 71.9P + … + 0.19 Tne) 
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eTS Fuzzy Models (snapshot)
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On-line estimator prediction

First time 

calibration
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Chemical Industry
courtesy of Dr. A. Kordon, The Dow Chemical, TX

� Compositions 1-3 and Propylene 
distillation

� Large number of input variables, 
noise, sudden change of the 
process state (catalyzer change)
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4 case studies

General Information for the 4 data sets

Comp1 Comp2 Comp3 Propylene

All measured inputs 6 47 47 22
Selected Inputs 2 2 7 2

No of Samples 309 308 308 3000
Noise Yes no Yes Yes
Operating regime 

change at sample 127 113 113 Broad range of 
operations
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Composition 1

� Case 1 is to model the product composition in a 
distillation tower. 

� The process data is retrieved from 6 physical (‘hard’) 
sensors used as inputs to the inferential sensor applying 
hourly averages for every 8 hours. 

� The product composition (real output) is estimated by a 
laboratory analysis. 

� The estimation of the product composition contains 
noise due to the nature of the analysis. 

� A significant operating condition change has taken place 
after sample 127.
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Composition 2

� The second case concerns product composition 
in the bottom of the distillation tower.

� A list of 47 related variables are initially 
included as the inputs, some of them are very 
loosely related to the product composition. 

� Similarly, lab analysis has been used to obtain 
the real output, which is less noisy than the 
output for the other 3 datasets. 

� There is a significant operation change around 
data sample 113.
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Composition 3

� The third case is very similar to 
the previous case (Composition 2). 

� The only difference is that the level 
of noise in this problem is much 
higher.
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Propylene

� The fourth case concerns the Propylene that is 
in the top of the distillation tower. 

� 22 different physical (‘hard’) sensors and 
respectively inputs for the inferential sensor 
are measured. 

� The data for this, fourth case contains 3000
data points measured every 15 minutes using 
gas chromatography.

� They cover a very broad range of operating 
conditions.
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Experimental results:
Propylene

• The propylene data set is collected from a 
chemical distillation process run at The Dow 
Chemical Co., USA.

• The data set consists of 3000 readings from 23
sensors that are on the plant.

• They are used to predict the propylene content 
in the product output from the distillation.

• Some of the inputs may be irrelevant to the 
model and thus bring noise. 
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Experimental results:
Propylene

Results for Predicting Propylene Content of 
Distillation

Method Rules inputs RMSEcorrel

NN (off-line) - - 23 0.11 0.963

ANFIS (off-line) 29 23 0.11 0.972

DENFIS 235 23 0.11 0.979

eSensor (A &B) 23 23 0.10 0.981

eSensor (A,B,F) 23 2 0.09 0.982

eSensor (A-E) 14 23 0.12 0.974

eSesnor (A-F) 7 2 0.09 0.983
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Experimental results:
Propylene
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Final Rule-base for Propylene:

R1: IF (x1 is 24.6) AND (x2 is 26.3) THEN ( ) 

R2: IF (x1 is 39.0) AND (x2 is43.5) THEN ( )

R3: IF (x1 is 46.2) AND (x2 is 49.5) THEN ( ) 

R4: IF (x1 is 45.9) AND (x2 is 49.9) THEN ( )

R5: IF (x1 is 36.2) AND (x2 is 43.5) THEN ( )

R6 IF (x1 is 31.6) AND (x2 is 38.7) THEN ( ) 

R7 IF (x1 is 40.6) AND (x2 is  39.5) THEN ( )

21 324.0039.0 xxy −+−=

21 340.077.4615.0 xxy −+−=

21 450.0090.1679.0 xxy ++−=

21 032.3570.5340.1 xxy −+−=

21 065.0320.0002.0 xxy −+−=

21 129.0366.0007.0 xxy −+−=

21 345.0406.0527.0 xxy −+−=
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Experimental results:
Propylene
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Evolution of the fuzzy rules
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Experimental results:
NOx emissions

• The last data set was collected from car 
engines to estimate the NOx content in 
the emissions that they produce.

• It is based on the variables that are easy to 
measure, such as pressure in the cylinders, 
engine torque, rotation speed, etc. 

• In total as much as 180 input variables 
are considered as potential inputs
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Experimental results:
NOx emissions

Results for NOx Car Emission Analysis 

Model Rules inputs RMSE correl

NN (off-line) - 180 0.15 0.934

ANFIS (off-line) 32 180 0.15 0.932

DENFIS 113 180 0.17 0.917

eSensor (A,B) 22 180 0.17 0.914

eSensor (A,B,F) 36 101 0.13 0.947

eSensor (A-E) 14 180 0.17 0.908

eSensor (A-F) 13 7 0.15 0.935
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Experimental results:
NOx emissions
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Features of eSensor

� Intuitive models

� Adaptation and automatic recalibration

� Predictions are within acceptable values

� On-line application to be implemented

�OPC connection to DCS

�Lab data results interface

�Automatic procedure. 

�On-line optimization of the model/sensor 
structure! Incl. inputs selection, fuzzy rules, 
sets, all parameters etc.
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eSensor

� On-line inferential sensor with evolving 
structure

� Self-calibrating

� Detects shifts and drifts in the data 
pattern

� Adaptive, non-linear, robust, 
linguistically interpretable, 
computationally light 

� Input selection – on-line
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What do we gain?

� A new approach to TS FS structure adaptation 
on-line including

� On-line inputs (feature) sensitivity analysis 
and selection

� Utility of fuzzy rules monitoring and rule-base 
simplification

� Concept shift detection using derivative of age
of the cluster/rule

� Applied to various problems with improved 
results
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Algorithm Analysis

• Maintenance costs and lab samples (manual 
work) – reduced significantly

• No problem-specific or user-specific 
parameters → generic

• Can start from an a priory models structure 
(expert-based or off-line) and evolve (adapt 
and improve)

• Extracts knowledge automatically

• Detects anomalies automatically (low P)

• computationally very light, can be 
implemented on chip and embedded

3rd International seminar on new issues 

in AI, February 2010, Carlos III, Madrid

45

SLAM

• Joint classification & classifier design

• Classifier needs adaptation (structure/rules, 
number of classes)

• Start from ‘scratch’ (unsupervised learning for 
situation awareness, # of classes/landmarks 
unknown beforehand)

• Recursive ⇒ computationally efficient

• On-line, autonomous, visual self-localisation 
and mapping

• Very often absolute coordinates – unavailable 
or unreliable
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Landmarks

� Novelty Detection

• The ability to differentiate between common sensory 
stimuli and perceptions never experienced before

� Landmark Recognition (trees, rocks, contours, 
other static objects)

• With Novelty Detection, robot can select aspects of the 

environment that are unusual and therefore can be used 
as landmarks for self-localization

� Vital to survive and operate in a completely 
unknown environment and for Terrain Navigation
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Landmark recognition

• Explore unknown environment

• No communication link (no 
GPS, maps…)

• Fully unsupervised (no pre-
training, no model structure 
assumed)

• Indoor, and

• Outdoor experiments
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Outdoor experiment

• Frames grabbed in RT, demo

• Features – colour intensity 

(also may be rotation 

angle/heading, distance…)
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Outdoor experiment
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Outdoor experiment
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Fast RDE for detection

� Traditional off-line methods require a large 
amount of computer storage for archiving 
video streams

� The main challenge is to develop autonomous 
systems requiring little processing time and 
memory storage

� The most prominent approaches are based on 
so called background subtraction and KDE 
which are based on statistical representation 
of the background

� It is highly desirable these systems to be free from 
task-specific thresholds and tuning – fully automatic
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KDE

�� KDE using Gaussian kernel to estimate KDE using Gaussian kernel to estimate 

the the pdfpdf of a pixel:of a pixel:
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RDE

• The main idea is to approximate the pdf by 
a Cauchy type of kernel instead of Gaussian 
and recursively calculate it

• This approach allows the image frames to be 
discarded once processed and not to be kept 
in memory

• Cauchy function-based                    
potential represents an                    
estimate of the density of a                
certain data sample based                        
on similarity to all previously                 
seen data samples
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Detection using RDE

• The main idea is to 
recursively estimate 
the similarity to the 
pixels in that position 
from all previous 
frames (without 
memorising them):

( )( ) ( )foregroundistxTHENtPtxPIF )()()( <
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Detection using RDE

• By applying this condition to each pixel 
of the current frame it is possible to 
identify the pixels that potentially form 
a novel object

• Memory required is comparable with a 
single frame (KDE requires N frames) 
and the approach is faster in orders of 
magnitude (30 or more times) RT (in 
ms range per frame)
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Detection using RDE

• One way to determine the object for tracking 

purposes is by using the spatial mean of all pixels

that has been classified as a foreground in a given 
image frame

• The use of mean is prone to noise (due to wind, 

change of illumination, moves of the leaves of the 
trees, vibrations etc.)

• This may lead to false positioning which might be 

misleading for the tracking.
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Detection using RDE

• One approach to 
cope with this 
problem is to use 
again the potential 
(density), but this 
time in spatial terms 
inside a frame
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Detection using RDE

• The logic is now inverted - the point with 
the max density will guarantee a better 
lock on the target because it ignores the 
noise and outliers in a natural way
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Multiple targets 
identification by clustering

• Using clustering we were able to correctly 
identify multiple targets
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Tracking using eTS

• eTS represents a fuzzy mixture of Kalman
filters that are locally active

• The local regions of the data space represent 
different parts of the image frame, e.g. ‘upper
left’, ‘bottom right’, etc. 
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Tracking using eTS

• In the tracking problem the aim is to predict 
the next position of the color blob in the next, 
(t+1)th frame identified by the RDE 

• eTS neuro-fuzzy system has another 
advantage – it can be represented by 
linguistically tractable fuzzy rules:

( ))()1(
^

tTftT =+

( ) ( )3
: ( ) 333 ( ) 354

ˆ ( 1) 50.37 0.8 ( ) 0.05 ( )

ˆ ( 1) 248.54 0.94 ( ) .1.18 ( )

i

i

Rule IF h t is close to AND v t is close to

h t h t v t
THEN

v t h t v t
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Experimental Results
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Experimental Results
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Detect and track RDE + eTS
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Cyber security

� Intruder detection algorithms that learn the hackers 

possibly changing tactics

� Billions of data logs – batch impossible

� Automatically detect different types of attacks/intrusions

� guessing password

� port scanning

� denial-of-service, 

etc.
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User behaviour clustering
courtesy of Dr. Jose Antonio Iglesias

� Automatic on-line 

classification of 
users based on the 

log info (UNIX 

commands) they 
use into not pre-

defined groups

*SS*, postnews, 

enscript, fg, 
enscript, cd, *ES*, 

*SS*, rlogin…
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Machine Health Monitoring
Courtesy of Dr. D. Filev, Ford, USA

Nowadays Machine Health Monitoring is a 
synergy between FIS and Autonomous 
Diagnostics and Prognostics
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Machine Health 
Monitoring

Plant Maintenance 
Personnel

Conventional Machine Health Monitoring

DB 
Raw 
Data

Signature 

Analysis

Sensors

On-line / 
Wireless / 
Manual Data 

Monitoring

Early 
Warning

Continuous 
Machine Health 
Monitoring / FIS 
Integration

Autonomous 

Diagnostics & 

Prognostics
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• Model-based diagnostics: reasoning based on 
the first principle models that declaratively 
describe a system's structural and behavioral 
properties 

• Model-based diagnostics: universal 
approximators

• Predefined sets of symptoms and faults

• Train (supervised) a universal approximator as a 
model (NN, fuzzy model, multiple switching model 

approximator, etc.)

Industrial Diagnostics
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•Unsupervised Diagnostics: Novelty / Anomaly 
Detection

• Pattern change

• Unsupervised learning

• Inexpensive / integrated equipment 
(manufacturing)

• Alternative applications - pattern / signature 
monitoring

Industrial Diagnostics
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Novelty Detection:
Inspired from Process Monitoring

• Statistical Process Control Charts

• Statistical process control (SPC) involves using 
statistical techniques to measure and analyze the 
variation in processes

• Pattern Recognition Approach

• Conventional classification methods require enough 
examples for all classes; problem – limited fault data

• Novelty detection is the process of learning the 
normality of a system by fitting a model to the set of 
normal examples
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Novelty Detection

|y - yi
*| < 3 σyi (y – yi

*)’ Cyi
-1(y – yi

*) < χχχχ2
p,αααα

Scalar condition Vector condition
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Unsupervised 
Novelty Detection

Feature Vector

…

Operating 
Mode (OM) 

Clusters

Fault Type I (Incipient):  OM 
cluster centers approaching the 
boundary of an OM cluster with 

a low health factor

Fault Type II (Drastic): Rapid 
generation of new OM clusters 
with low health factors 

Off-line:

Time Domain (kurtosis, 
root mean square, 
skewness, crest 
factor, autoregressive 
model parameters); 

Frequency / Energy  
(peaks of Fourier 
transform, power 
spectrum, frequency 
band energy, overall 
energy)

Mixed Domain (wavelet 
coefficients)

Standardization / PCA Transformation
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Standard
ization

PCA 
Transfor

mation

Nd
Feature 

Space

2d PCA 

Space

Preprocessing

Feature space transformation and clustering
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Health Factor 
= Age * 

Population 
(normalized)

OM Health Factor

OM 
Clusters

Hi = Ai Pi

Learning Operating 
Mode (OM) Clusters 
to Approximate 
Equipment OM
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OM 
Clusters

OM dynamics prognostics

OM 
Clusters

Evolving Models (eTS) approximate local OM dynamics

Learning inter OM dynamics to predict next host cluster
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Ford Machine Health 
Monitoring System

Up-to-Date Summary 

Status 
Clustering condition

Feature SPC

Raw Data & Freq. Signatures

Detailed Status text report

Validation: SKF R&D Facility in Novi, MI, 2005
Production Pilot: Ohio Truck Plant, 2005
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•Machine health prognostics can also be 
applied to:

• Identifying a change in the driver’s 
performance style (speed, acceleration, torque 
request)

• Estimation of the cognitive load change 
(control actions – acceleration, braking, 
steering)

Machine Health Prognostics
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Unsupervised 
Novelty Detection

• Clustering approach requires significant 
resources for on-board vehicle applications 
implementation

• Overall variance “status” is (in some cases) 
sufficient to characterize a major change

• Recursively estimated determinant of the 
covariance matrix represents the aggregated 
total variance
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Example: Real Time Estimation 
of Aggressive vs. Cautious Driving

Aggressive Driving Pattern Cautious Driving Pattern

Accelerator Pedal & Derivative Covariance Determinant

Aggressive 
Drivers

Cautious 
Drivers

1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 00 6 0 0 0 7 0 00 8 0 0 0 9 0 00 1 0 0 0 0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0
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Lecture 3 Review

1. Process industries (eSensors)

a) predicting quality in oil refineries (CEPSA)

b) modelling polymerisation (The Dow 
Chemicals, TX)

2. Robotics, SLAM, landmarks

3. Security and video-analytics

4. Automotive industry
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Conclusions, Review

In this short course of 3x2 lectures we 
have introduced:

1) L1: Concept

2) L2: Algorithms

3) L3: Applications

of Evolving intelligent systems – a new emerging 
paradigm on the crossroads of machine 
learning, adaptive systems and AI


