

Inferential (soft) Sensors

- \checkmark Inferential (soft) sensors since `80s in
- chemical, process industries etc.
- Product quality on-line monitoring
- \checkmark 'Black-box methods', NN, PCA, PLS, SVM
- \checkmark They often provide a valuable advantage over
- the conventional approaches that rely on
 - manual intervention and laboratory tests
- 2 Februar

OII refinery	7	Departme	nfoLab2	1 1
Results for Predicting (Quality of 1	he Cru	de Oil I	Distill
Method	Rules	inputs	RMSE	
Neural Network (off-line)			2.87	3.43
ANFIS (off-line)			2.15	2.25
DENFIS			2.46	
eSensor (A+B)			2.29	2.37
eSensor (A,B,F)			2.30	2.38
eSensor (A-E)			2.19	2.28

<section-header><section-header><section-header><image><image>

3rd International seminar on new issues in AI, February 2010, Carlos III, Madrid

Ex	pe	eri	m	er	ita	l Re		foLab21 IC correction Roote	n.
		Method		indow size	Frame size (pixels)	Time per frame (sec)	Memory used Per pixel (bites)	Memory calculation	
	Video Clip (1)	KDE		20	176×144	15.57	60	O(60)	
		RDE	E 1		176×144	0.43	4	O(4)	
	Video	KDE		20	320×240	44.56	60	O(60)	
	(2)	RDE		1	320×240	1.17	4	O(4)	
				Method	RMSE	NDEI	VAF (%)		
			6	KF	15.58	0.7	50.57		
		pixe		eTS	13.2	0.56	69.14		
			h, pixel	KF	23.78	0.66	55.58		
				3rd Inte	21.31 ernational se February 201	0.56 ninar on new is 0, Carlos III, M	68.56 ssues adrid		62

Unsupervised InfoLab21 Novelty Detection

• Clustering approach requires significant resources for on-board vehicle applications implementation

• Overall variance "status" is (in some cases) sufficient to characterize a major change

• Recursively estimated determinant of the covariance matrix represents the aggregated total variance

3rd International seminar on new issues in Al, February 2010, Carlos III, Madrid

