
3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Parallel and Distributed
Tools for Evolutionary

Computations

by Marc Parizeau, professor
Dep. of Electrical and Computer Engineering,

Computer Vision and Systems Laboratory,
Université Laval

and
Deputy Director of CLUMEQ

CVSL

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Outline

• Part I: fundamentals

• Part II: tools
✓ hardware: Colossus

✓ software

✓ Open BEAGLE

• Part III: architecture
✓ Distributed Task Manager (DTM)

✓ Evolutionary Algorithms in Python (EAP)

✓ DTM+EAP = DEAP computing!

2

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Part I: fundamentals

• Evolutionary computations for artificial
intelligence?

• Flavours of evolutionary Algorithms

• Multiobjective optimization

• Parallelism

3

An excellent book
that covers

metaheuristics in
general, including

evolutionary
algorithms...

Another good book
that covers

everything that
you want to know
about evolutionary

algorithms...

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Why should you care?

• Optimization problems are everywhere

• Computing optimal solutions is often
intractable
✓ thus the need for approximate optimization methods that

generate "acceptable" solutions in a "reasonable" amount
of time

• Evolutionary Algorithms (EA) are good
approximate problem solving methods
✓ generic in nature

✓ efficient for hard problems

6

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Example 1
Traveling salesman

7

problem: finding the shortest «hamiltonian cycle» ?
> 1081 possibilities (for 60 cities)

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Example 2
Lens system design
• Lens systems are very much non-linear

• Design parameters include number of
lenses, curvature, refractive indices, and
spacings

8

c
1
c
2

c
3

c
4

n
1

n
2

n
0

t
1

t
2

t
3

Fig. 1. Parameters of a two-lens system: nj represents the refractive index of a
media, cj a lens surface curvature, t1 and t3 are the lens thicknesses, and t2 is the
lens spacing.

!"

θ#
θ"

!#

Fig. 2. Illustration of Snell-Descartes first law of refraction.

law of refraction (Snell-Descartes) that governs the behavior of light passing

through the interface between two media having different refractive indices.

The path of a ray passing from medium 1 to medium 2 obeys the following

equation:

n1 sin θ1 = n2 sin θ2 (1)

where n1 and n2 are refractive indices of media 1 and 2, and θ1 and θ2 are

incident and refracted angles relative to the normal of the interface between

the two media. Figure 2 illustrates this first law of refraction. On the other

hand, the paraxial approximation consists in assuming that all rays lie close

to the optical axis. Using the sine expansion:

sin φ = φ− φ3

3!
+

φ5

5!
− · · · (2)

and let φ ≈ 0 =⇒ sin φ ≈ φ. Equation 1 becomes:

n1θ1 ≈ n2θ2 (3)

5

c: curvature
n: refractive index
t: spacing

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

• Modelling should be based on the Snell-
Descartes formula:

• but, instead, uses the first order paraxial
approximation that assumes light rays
close to the optical axes:

9

c
1
c
2

c
3

c
4

n
1

n
2

n
0

t
1

t
2

t
3

Fig. 1. Parameters of a two-lens system: nj represents the refractive index of a
media, cj a lens surface curvature, t1 and t3 are the lens thicknesses, and t2 is the
lens spacing.

!"

θ#
θ"

!#

Fig. 2. Illustration of Snell-Descartes first law of refraction.

law of refraction (Snell-Descartes) that governs the behavior of light passing

through the interface between two media having different refractive indices.

The path of a ray passing from medium 1 to medium 2 obeys the following

equation:

n1 sin θ1 = n2 sin θ2 (1)

where n1 and n2 are refractive indices of media 1 and 2, and θ1 and θ2 are

incident and refracted angles relative to the normal of the interface between

the two media. Figure 2 illustrates this first law of refraction. On the other

hand, the paraxial approximation consists in assuming that all rays lie close

to the optical axis. Using the sine expansion:

sin φ = φ− φ3

3!
+

φ5

5!
− · · · (2)

and let φ ≈ 0 =⇒ sin φ ≈ φ. Equation 1 becomes:

n1θ1 ≈ n2θ2 (3)

5

c
1
c
2

c
3

c
4

n
1

n
2

n
0

t
1

t
2

t
3

Fig. 1. Parameters of a two-lens system: nj represents the refractive index of a
media, cj a lens surface curvature, t1 and t3 are the lens thicknesses, and t2 is the
lens spacing.

!"

θ#
θ"

!#

Fig. 2. Illustration of Snell-Descartes first law of refraction.

law of refraction (Snell-Descartes) that governs the behavior of light passing

through the interface between two media having different refractive indices.

The path of a ray passing from medium 1 to medium 2 obeys the following

equation:

n1 sin θ1 = n2 sin θ2 (1)

where n1 and n2 are refractive indices of media 1 and 2, and θ1 and θ2 are

incident and refracted angles relative to the normal of the interface between

the two media. Figure 2 illustrates this first law of refraction. On the other

hand, the paraxial approximation consists in assuming that all rays lie close

to the optical axis. Using the sine expansion:

sin φ = φ− φ3

3!
+

φ5

5!
− · · · (2)

and let φ ≈ 0 =⇒ sin φ ≈ φ. Equation 1 becomes:

n1θ1 ≈ n2θ2 (3)

5

c
1
c
2

c
3

c
4

n
1

n
2

n
0

t
1

t
2

t
3

Fig. 1. Parameters of a two-lens system: nj represents the refractive index of a
media, cj a lens surface curvature, t1 and t3 are the lens thicknesses, and t2 is the
lens spacing.

!"

θ#
θ"

!#

Fig. 2. Illustration of Snell-Descartes first law of refraction.

law of refraction (Snell-Descartes) that governs the behavior of light passing

through the interface between two media having different refractive indices.

The path of a ray passing from medium 1 to medium 2 obeys the following

equation:

n1 sin θ1 = n2 sin θ2 (1)

where n1 and n2 are refractive indices of media 1 and 2, and θ1 and θ2 are

incident and refracted angles relative to the normal of the interface between

the two media. Figure 2 illustrates this first law of refraction. On the other

hand, the paraxial approximation consists in assuming that all rays lie close

to the optical axis. Using the sine expansion:

sin φ = φ− φ3

3!
+

φ5

5!
− · · · (2)

and let φ ≈ 0 =⇒ sin φ ≈ φ. Equation 1 becomes:

n1θ1 ≈ n2θ2 (3)

5

c
1
c
2

c
3

c
4

n
1

n
2

n
0

t
1

t
2

t
3

Fig. 1. Parameters of a two-lens system: nj represents the refractive index of a
media, cj a lens surface curvature, t1 and t3 are the lens thicknesses, and t2 is the
lens spacing.

!"

θ#
θ"

!#

Fig. 2. Illustration of Snell-Descartes first law of refraction.

law of refraction (Snell-Descartes) that governs the behavior of light passing

through the interface between two media having different refractive indices.

The path of a ray passing from medium 1 to medium 2 obeys the following

equation:

n1 sin θ1 = n2 sin θ2 (1)

where n1 and n2 are refractive indices of media 1 and 2, and θ1 and θ2 are

incident and refracted angles relative to the normal of the interface between

the two media. Figure 2 illustrates this first law of refraction. On the other

hand, the paraxial approximation consists in assuming that all rays lie close

to the optical axis. Using the sine expansion:

sin φ = φ− φ3

3!
+

φ5

5!
− · · · (2)

and let φ ≈ 0 =⇒ sin φ ≈ φ. Equation 1 becomes:

n1θ1 ≈ n2θ2 (3)

5

c
1
c
2

c
3

c
4

n
1

n
2

n
0

t
1

t
2

t
3

Fig. 1. Parameters of a two-lens system: nj represents the refractive index of a
media, cj a lens surface curvature, t1 and t3 are the lens thicknesses, and t2 is the
lens spacing.

!"

θ#
θ"

!#

Fig. 2. Illustration of Snell-Descartes first law of refraction.

law of refraction (Snell-Descartes) that governs the behavior of light passing

through the interface between two media having different refractive indices.

The path of a ray passing from medium 1 to medium 2 obeys the following

equation:

n1 sin θ1 = n2 sin θ2 (1)

where n1 and n2 are refractive indices of media 1 and 2, and θ1 and θ2 are

incident and refracted angles relative to the normal of the interface between

the two media. Figure 2 illustrates this first law of refraction. On the other

hand, the paraxial approximation consists in assuming that all rays lie close

to the optical axis. Using the sine expansion:

sin φ = φ− φ3

3!
+

φ5

5!
− · · · (2)

and let φ ≈ 0 =⇒ sin φ ≈ φ. Equation 1 becomes:

n1θ1 ≈ n2θ2 (3)

5

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

• The five Seidel aberrations results from
the difference between third and first
order optics: spherical, coma,
astigmatism, field curvature, and
distortion.

10

!"#"$%"&
'()*+

!"#$%&'(&)#*+,-.)

/'%$&$0)*1$%&'(&$'" 2).-&$0)*1$%&'(%$'"

a) b)

Fig. 3. Two of the Seidel aberrations: a) spherical aberration, and b) distortion.

This approximation is the basis of Gauss optics or first order optics.

The aberrations of an optical system are measured by computing the differ-

ence between the real image (i.e. the one that stems from Equation 1), and the

image that results from the paraxial approximation. In other words, two ray

traces emerging from the same point on the object with the same (non-zero)

angle, one exact and one approximated
1
, will strike the image plane at dif-

ferent positions. These differences, averaged over a whole set of distinct rays

provide a convenient basis for building a quality measure.

It is interesting to note that if we also consider the second term of the sine

expansion in Equation 2, we obtain what is called third order optics. The dif-

ference between first and third order optics represents the five Seidel aberra-

tions: spherical aberration, coma, astigmatism, field curvature, and distortion

[10]. Figure 3 illustrates two of these. The spherical aberration (Figure 3a)

is caused by the fact that, for spherical lenses, rays coming from infinity and

parallel to the optical axis do not converge to the same focus point, depending

on the ray distance from the optical axis. The result of this type of aberration

is a blurred image. Another type of aberration is distortion, that causes pin-

cushion (positive distortion) or barrel (negative distortion) shaped images, as

shown in Figure 3b.

Finally, it should be noted that the refractive index of a given glass is not

constant but varies as a function of the light wavelength. The refractive index

value found in the literature is usually the refractive index value of the material

at the Helium d wavelength (λ = 587.6 nm). Also, the refractive index rate of

change with the wavelength is different from one glass to another. It is standard

to characterize the dispersion property of a given glass using a measure called

the v-number (or Abbe number). This measure is simply a relative rate of

change of the refractive index, calculated using the refractive index of the

material at three arbitrary wavelengths. The v-number of glasses is a factor

that should be taken into account when designing polychromatic lens systems.

1 The approximated ray trace is virtual and computed with Gauss optics.

6

c
1
c
2

c
3

c
4

n
1

n
2

n
0

t
1

t
2

t
3

Fig. 1. Parameters of a two-lens system: nj represents the refractive index of a
media, cj a lens surface curvature, t1 and t3 are the lens thicknesses, and t2 is the
lens spacing.

!"

θ#
θ"

!#

Fig. 2. Illustration of Snell-Descartes first law of refraction.

law of refraction (Snell-Descartes) that governs the behavior of light passing

through the interface between two media having different refractive indices.

The path of a ray passing from medium 1 to medium 2 obeys the following

equation:

n1 sin θ1 = n2 sin θ2 (1)

where n1 and n2 are refractive indices of media 1 and 2, and θ1 and θ2 are

incident and refracted angles relative to the normal of the interface between

the two media. Figure 2 illustrates this first law of refraction. On the other

hand, the paraxial approximation consists in assuming that all rays lie close

to the optical axis. Using the sine expansion:

sin φ = φ− φ3

3!
+

φ5

5!
− · · · (2)

and let φ ≈ 0 =⇒ sin φ ≈ φ. Equation 1 becomes:

n1θ1 ≈ n2θ2 (3)

5

spherical aberration

Christian Gagné, Julie Beaulieu, Marc Parizeau and Simon Thibault, "Human-Competitive Lens System
Design with Evolution Strategies", Applied Soft Computing, September 2008.

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Example 3
Surveillance and protection

• For sensor networks

• Optimizing sensor placement to:
✓ maximize coverage

✓ minimize cost

✓ minimize intervention time

• Integrate with:
✓ sensor models

✓ geographical information systems

11

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Part I: fundamentals

• Evolutionary computations for artificial
intelligence?

• Flavours of evolutionary Algorithms

• Multiobjective optimization

• Parallelism

12

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Evolutionary algorithms

• EAs are population based metaheuristics
that can solve most any optimization
problem

• They come in many flavours, including
the following:
✓ Genetic Algorithms (GA)

✓ Evolutionary Strategies (ES)

✓ Evolutionary Programming (EP)

✓ Genetic Programming (GP)

13

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Darwin theory

• Natural selection is the process by
which heritable traits that make it more
likely for an organism to survive and
successfully reproduce become more
common in a population over successive
generations. It is a key mechanism of
evolution.

14

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

High-level template

15

generational evolutionary algorithms

Illustration from Metaheuristics - From design to implementation

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Main questions:

• What representations?
✓ sequential structure (bit or float)

✓ finite automaton

✓ tree structure

• What selection mechanism?
✓ roulette wheel

✓ tournaments

• What reproduction operators?
✓ mutation (unary operator)

✓ crossover (binary operator)

• What replacement strategy?

• What stopping criteria?

16

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

17

Table from Metaheuristics - From design to implementation

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

18

Table from Metaheuristics - From design to implementation

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Genetic algorithms

• Representations
✓ binary strings

✓ sequence of integers / permutations

✓ vectors of floats

• Reproduction using crossover operations

• Mutations to promote diversity

• Generational replacement

19

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Selection

20

 ()()
()

Jmax

j=1

Fitness j
Prob j =

Fitness j!

 Etc.…

Étape 2 : Tournoi
à deux individus

Étape 3 : Gagnants du tournoi Étape 1 : Sélection aléatoire de deux individus

Population initiale
 avant sélection

Individus sélectionnés
(la population est à moitié
remplie)

wheel of fortune
tournaments

9

Prob(j)

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

21

Illustration from Introduction to Evolutionary Computing

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

22

Illustration from Introduction to Evolutionary Computing

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

23

Illustration from Introduction to Evolutionary Computing

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

24

Illustration from Introduction to Evolutionary Computing

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

25

Illustration from Introduction to Evolutionary Computing

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Evolutionary Strategies

• Representation: vector of floats

• Crossover rarely used

• Continuous optimization using self-
adaptation Gaussian mutations

• Special (µ,!) or (µ+!) replacement
strategy
✓ µ is the parents size

✓ ! is the offsprings size

26

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Basic ES template

27

Initialize a population of μ individuals;
Evaluate the μ individuals;
Repeat

- Generate λ offsprings from the μ parents;
- Evaluate the λ offsprings;
- Replace the population with μ individuals
taken from parents and offsprings;

Until stopping criteria satisfied
Output best individual or population found

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Gaussian mutations

28

• Consists in a random perturbation of the
underlying vector

• Self-adapting correlation matrix

uncorrelated
single "

uncorrelated
diagonal #

correlated
full #

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Covariance Matrix
Adaptation (CMA-ES)

29

1 individual = vector x + matrix !

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Evolutionary
programming

• Representation: finite-state automaton
✓ binary or float

• Crossover rarely used

• Mutations
✓ bit flip or Gaussian

• (µ+µ) replacement strategy
✓ µ is the parents size

✓ µ is the offsprings size

30

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

31

Illustration from Introduction to Evolutionary Computing

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

• Changing an output symbol

• Changing a state transition

• Adding a new state

• Deleting a state

• Changing the initial state

32

Mutations operators

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Genetic programming

• Representation: parse tree

• Recombinations and mutations operate
on subtrees

• Generational replacement

33

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

34

2! + ((x+3) - y/(5+1)) (x⋀true)"((x⋁y)⋁(z#(x⋀y)))

Illustration from Introduction to Evolutionary Computing

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

35

i = 1;
while (i < 20)
{

i = i+1;
}

Illustration from Introduction to Evolutionary Computing

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

36

Illustration from Introduction to Evolutionary Computing

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

37

Illustration from Introduction to Evolutionary Computing

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

• Tree branches correspond to elementary
operations that can be applied on data to
solve the problem at hand
✓ the user must specify the set of applicable primitives

• Tree leaves (terminals) are terminal
symbols, that is input variables, constants,
or random values

• Trees are generated by randomly picking
primitives and terminals

38

Primitive operations

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

• Demes are
sub-population
that evolve in
isolation

• Periodically,
some travellers
migrate from
one deme to
the other

39

Island model

deme 1

2 Migrants

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Coevolution

40

• Two or more species that either compete
or cooperate through evolution

Illustration from Metaheuristics - From design to implementation

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

41

• The solution is the assembly
of the different species

• individuals from the different
species are randomly matched

Illustration from Metaheuristics - From design to implementation

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Exploration vs
exploitation

• Evolutionary algorithms are good at
exploring the solution space of the
problem
✓ because of their parallel nature

• Local search method are good at
exploiting local neighbourhoods
✓ but they get stuck in local optima

42

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Hybrid methods

• Combining local
search to EAs

• Memetic
algorithms
✓ adding a

developmental
learning phase
within the
evolutionary cycle

43

Illustration from Introduction to Evolutionary Computing

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Part I: fundamentals

• Evolutionary computations for artificial
intelligence?

• Flavours of evolutionary Algorithms

• Multiobjective optimization

• Parallelism

44

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Multiobjective
optimization

• Multicriteria decision making
✓ e.g. cost vs performance

• Pareto dominance

• Pareto front

• NSGA-II

45

• A vector of objectives u=(u1,...,un) is said
to dominate v=(v1,...,vn) iff no
component of v is better then those of u
and at least one component of u is better
than the corresponding component of v

∀i ∈ {1, . . . , n} : ui ≤ vi ∧ ∃i ∈ {1, . . . , n} : ui < vi

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Pareto dominance

46

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

47

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

4820

multiobjective optimization
is pushing on the Pareto front

towards the origin

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Crowding distance

49
13 Distance de crowding, les points noirs sont des soluti

i

i+1

 i-1

!"

1

f1

f2

−i 1
2f

+i 1
2f

+i 1
1f

−i 1
1f

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

50

Non-dominated sorting
(NSGA-II)

F1

F2

F3

Individus rejetés

Pt+1

Pt

Qt

Rt

Tri selon la dominance
Tri selon la distance de

crowding

Nouvelle
population
enfant 1tQ +
est créée
par :
Sélection
Croisement
Mutation

Boucle sur les générations

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Part I: fundamentals

• Evolutionary computations for artificial
intelligence?

• Flavours of evolutionary Algorithms

• Multiobjective optimization

• Parallelism

51

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Shared vs distributed
memory

52

Illustration from Metaheuristics - From design to implementation

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Non-Uniform Memory
Access (NUMA)

53

Illustration from Metaheuristics - From design to implementation

Off-the-shelf
processors

today are of
the NUMA

type!

For example,
the new Intel

Nehalem
architecture

(iCore 7)

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Multithreading

• Multiple threads of
execution within a single
process

• All threads share the
same memory space

• Requires synchronization
locks to protect shared
variables

54

Illustration from Metaheuristics - From design to implementation

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Memory wall

• High bandwidth
✓ to quickly transfer large messages

• Low latency
✓ to be able to send many short messages

55

latency message transfer

start
sending

start
receiving

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Memory access balance

• Some architecture deliberately choose
slower CPUs to better balance access time
between shared and distributed memory
✓ for example the Blue Gene architecture from IBM

56

CPUs consume less power;
so they can put more inside
a cabinet!

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Message Passing
Interface (MPI)

• Standard specification for message
passing libraries
✓ practical

✓ portable

✓ efficient

✓ flexible

• Interfaces in C, C++, and Fortran
✓ also some support for other languages

57

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Program structure

• The same program
runs on many process

• Each process has a
unique ID called the
MPI rank

• Messages can be
send or received by
ranks or by group of
ranks

58

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Communicators

59

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Buffering

60

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Blocking vs non blocking

• Blocking:
✓ a send will only return when it is safe to reuse the

message buffer

✓ a receive only returns after data has arrived and is
ready to use

• Non blocking:
✓ send and receive will return almost immediately

✓ if no data is available, receive returns with fail status

✓ user cannot predict when operations will be complete

61

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

62

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

63

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Conclusion

• EAs are both powerful and diverse

• But they require much computational
effort to solve real world problems

• However, they are also embarrassingly
parallel!

• Great speedups are achievable using
parallel architectures

64

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Part II: tools

• Hardware: colossus
✓ CLUMEQ

• Software
✓ requirements

✓ survey

• Open BEAGLE

65

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Hardware requirements

• EAs are compute intensive,
✓ but embarrassingly parallel!

• Real world problems are hard,
✓ because solution spaces are vast

✓ and objectives are many

• Clock frequencies are not expected to increase,
✓ but processors are now multicore

• Tools should be designed from the start to
efficiently exploit parallelism
✓ I wish everything could be "automagic"!

66

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

CLUMEQ

• Consortium of 11 universities in the
province of Québec, Canada

67

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Compute Canada
The national HPC platform

68

Compute Canada — Calcul Canada
A proposal to the

Canada Foundation for Innovation – National Platforms Fund

Hugh Couchman (McMaster University, SHARCNET)
Robert Deupree (Saint Mary’s University, ACEnet)
Ken Edgecombe (Queen’s University, HPCVL)
Wagdi Habashi (McGill University, CLUMEQ)
Richard Peltier (University of Toronto, SciNet)
Jonathan Schaeffer (University of Alberta, WestGrid)
David Sénéchal (Université de Sherbrooke, RQCHP)

Executive Summary

The Compute/Calcul Canada (CC) initiative unites the academic high-performance comput-
ing (HPC) organizations in Canada. The seven regional HPC consortia in Canada —ACEnet,
CLUMEQ, RQCHP, HPCVL, SciNet, SHARCNET and WestGrid— represent over 50 institutions
and over one thousand university faculty members doing computationally-based research. The
Compute Canada initiative is a coherent and comprehensive proposal to build a shared distributed
HPC infrastructure across Canada to best meet the needs of the research community and en-
able leading-edge world-competitive research. This proposal is requesting an investment of 60 M$
from CFI (150 M$ with matching money) to put the necessary infrastructure in place for four
of the consortia for the 2007-2010 period. It is also requesting operating funds from Canada’s
research councils, for all seven consortia. Compute Canada has developed a consensus on national
governance, resource planning, and resource sharing models, allowing for effective usage and man-
agement of the proposed facilities. Compute Canada represents a major step forward in moving
from a regional to a national HPC collaboration. Our vision is the result of extensive consultations
with the Canadian research community.

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Québec site

• Silo of a decommissioned
Van de Graaff particule
accelerator

• Recycled as a cooling
enclosure for a
supercomputer

69

exterior view
(circa 1965)

control room computer room

accelerator upper part
target room

Van de Graaff
particle

accelerator

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Concept

• Unique in the world

• Compute racks arranged
in a cylindrical topology

• Inner hot-air core

• Outer cold air ring-shape
plenum
✓ low air velocity, because of high

cross-section

✓ no corners to produce turbulence

73

W
IN

T
E

R
 S

T
R

E
E

T
 A

R
C

H
IT

E
C

T
S

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Main specifications

• up to 56 standard size racks
on 3 levels

• up to 1.2 megawatts of
power & cooling

• up to 132,500 CFM of
blowing power

• very efficient cooling system
✓ capable of recycling heat

✓ capable of free air cooling

74

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

75

Free air
cooling
system

Main
cooling
system

Air
blowers

cooling
coils

cold air plenum
(32 m2)

hot air core
(25 m2)

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Colossus cluster

• Sun constellation system
✓ 10 fully loaded Sun Blade 6048, with X6275 modules

(double Nehalem EP blade, 2.8GHz, 24GB of RAM)

✓ full-bisection IB-QDR interconnect (2xM9 switches)

✓ 1 PB of Lustre storage in a high availability
configuration, using 2 MDS and 9x2 OSS

✓ Sun J4400 storage arrays

79

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

• 40 infrastructure nodes

• 960 compute nodes

• 1920 CPU sockets (Nehalem-EP 2.8GHz)

• 7680 processor cores

• about 23 TB of RAM

• 500 TB of disk (will be upgraded to 1 PB)

• Full bisection 40 Gb/sec networking
between compute nodes (no bottlenecks)

• 10 Gb/sec Ethernet to the university
backbone

80

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

8123

Second floor contains
all compute racks +

core networking
switches

First floor contains
file system &

infrastructure nodes

Racks aligned in a
circle around a

central hot core;
outside ring is a
cold air plenum

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

8257

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

8358

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

8459

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

8560

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

8661

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

8762

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

8863

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

89

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

9065

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

9166

Full bisection topology!

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

• Compute nodes:
✓ 36.6 < STREAM < 37.9 GB/s

✓ SPECint = 233

✓ 189 < SPECfp < 190

• Interconnect:
✓ MPI ping-pong latency < 2 usec

✓ MPI ping-pong bandwidth > 3.1 GB/s

✓ MPI all-to-all bandwidth > 1.1 GB/s

✓ iPerf > 9.2 Gb/s

92

Benchmarking

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

• Lustre file system (18 OSS):
✓ IOR read performance = 33.6 GB/s

✓ IOR write performance = 17.3 GB/s

✓ all over IB

• Boot time: 4 minutes 58 seconds
✓ all over IB

• Max power HPL: 332 kW

93

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

94

www.top500.org

theoretical
teraflops

measured
teraflops

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

955

industry

non-academic research

academic research

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

9612

MIMD

SIMD

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

9713

x86

Power

AMD

Itanium

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

9814

(Xeon)

(IBM)

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

99

Nehalem architecture

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

100

Memory access

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

101

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

10228

Unix

Linux

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

10329

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

10423

gigabit
ethernet

infiniband

propriétaire

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

10524

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Part II: tools

• Hardware: colossus
✓ CLUMEQ

• Software
✓ requirements

✓ survey

• Open BEAGLE

106

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

READ tools

• Research through EA requires quick
prototyping

• Tools should be:
✓ simple

✓ flexible

✓ well documented

✓ (reasonably) efficient

• KISS: Keep It Simple and Stupid!

107

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Software requirements

• Code reuse

• Flexibility and adaptability

• Transparency

• Portability

• Ease of use and efficiency

108

Christian Gagné and Marc Parizeau, "Genericity in Evolutionary
Computation Software Tools: Principles and Case Study", International
Journal on Artificial Intelligence Tools, vol. 15, no 2, pp. 173-194, April 2006.

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

109

Survey

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Open BEAGLE

110

Beagle
Engine is an
Advanced
Genetic
Learning
Environment

Beagle est un
Environnement d'
Apprentissage
Génétique
Logiciel
Evolué

http://beagle.gel.ulaval.ca/

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

HMS Beagle

111

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Framework

112

!" !# $%&'()*+

!"#"$%&'()'*$+,"-.$/

012"&3'.$%"#3"4'*.5#4+3%.#6

)77'83+#4+$4'9",:;+3"'<%1$+$='>89<?

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Intelligent pointer /
reference counting

113

Pointer1
Object

-mRefCounter: = 1
Pointer2

1 (Object initialisation)

Pointer1
Object

-mRefCounter: = 2
Pointer2

2 (Affectation)

Pointer1
Object

-mRefCounter: = 1
Pointer2

3 (Unaffectation)

Pointer1
Object

-mRefCounter: = 0
Pointer2

4 (Object destruction)

CHAPTER 3. OPEN BEAGLE CLASS ARCHITECTURE 26

Pointer1
Object

-mRefCounter: = 1
Pointer2

1 (Object initialisation)

Pointer1
Object

-mRefCounter: = 2
Pointer2

2 (Affectation)

Pointer1
Object

-mRefCounter: = 1
Pointer2

3 (Unaffectation)

Pointer1
Object

-mRefCounter: = 0
Pointer2

4 (Object destruction)

Figure 3.2: Relation between objects and smart pointers.

problems, there is a templated class, PointerT, that defines the pointer unreferencing operators

to the desired type.

template <class T, class BaseType>

class PointerT : public BaseType {

public:

inline T& operator*();

inline T* operator->();

};

The PointerT template also emulates the mechanism of automatic pointer type binding for

inheritance-related classes. This allows a compile-time binding of T-type smart pointers that

inherit from the BaseType, when a BaseType object is needed. For example, suppose a method

taking an argument of the type Base::Handle, which is a smart pointer to an object instance

of the class Base. With the automatic type binding of smart pointer, the method can get

as argument a smart pointer to the type Derived::Handle, supposing that the class Derived

inherits from the class Base. This can be done without any explicit cast of the smart pointers.

PointerT has two templated parameters: the type of object handled, the T-type, and the parent

type of the smart pointer, the BaseType. The BaseType is useful for the automatic type binding

emulation by inheritance.

For each class of Open BEAGLE, the nested type Handle is declared. This is the type of

handle to the class, that is, a smart pointer that gives exact reference type. Usually, this type

is simply declared as a synonym of a parametrized PointerT.

class AnyClass : public SuperClass {

public:

typedef PointerT<AnyClass,SuperClass::Handle> Handle;

...

};

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Base class

114

namespace Beagle {
class Object {
public:

unsigned int getRefCounter() const;
virtual bool isEqual(const Object&) const;
virtual bool isLess(const Object&) const;
virtual void read(XMLNode::Handle&);
Object* refer();
void unrefer();
virtual void write(XMLStreamer&) const;

private:
unsigned int mRefCounter;

};
}

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Object factories

115

class Allocator : public Object {

public:

virtual Object* allocate() const =0;

virtual Object* clone(const Object&) const =0;

virtual void copy(Object&, const Object&) const =0;

};

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Base type wrappers

116

C++ name Wrapper name
bool Bool
char Char
double Double
float Float
int Int
long Long
short Short
std::string String
unsigned char UChar
unsigned int UInt
unsigned long ULong
unsigned short UShort

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Architecture

117

!"#$"%&

'##()(&*+

,+%&*(#&-.%(

/*0123##+

,+%&*(#&-.%(

4
*(
*-
.
(&
5
6(
5
&%
)

7
$8
#
&0
(9
:
)

.(*(%

!"#$"%

!"#$5(0#1

.;)(%:

<#1(%=(

3#88%&

>%80)(%&

>*1?#:0@%&

A0"*&05:

4%:%

B1?0"0?5*$

C%1#(;+%

+

z x

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Examples

• One max problem
✓ simple bit string representation

✓ find the individual that has the maximum number of
"ones"

✓ classical example of genetic algorithm

• Symbolic regression
✓ parse tree representation

✓ given a set of points corresponding to an unknown
function, find the symbolic expression of this function

✓ classical example of genetic programming

118

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

BEAGLE examples

119

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Example 1
One max problem
• Representation:
✓ bit string

• Objective function:
✓ maximize number of one bits

• Headers:
#include "beagle/GA.hpp"
#include "OneMaxEvalOp.hpp"

using namespace std;
using namespace Beagle;

120

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

int main(int argc, char** argv)
{
! try {
! ! // 1- Build the system
! ! System::Handle lSystem = new System;
! ! // 2- Install the GA bit string package
! ! const unsigned int lNumberOfBits = 50;
! ! lSystem->addPackage(new GA::PackageBitString(lNumberOfBits));
! ! // 3- Add evaluation operator allocator
! ! lSystem->setEvaluationOp("OneMaxEvalOp", new OneMaxEvalOp::Alloc);
! ! // 4- Initialize the evolver
! ! Evolver::Handle lEvolver = new Evolver;
! ! lEvolver->initialize(lSystem, argc, argv);
! ! // 5- Create population
! ! Vivarium::Handle lVivarium = new Vivarium;
! ! // 6- Launch evolution
! ! lEvolver->evolve(lVivarium, lSystem);
! } catch(Exception& inException) {
! ! inException.terminate(cerr);
! }
! return 0;
}

121

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

class OneMaxEvalOp : public Beagle::EvaluationOp
{
public:

//! OneMaxEvalOp allocator type.
typedef Beagle::AllocatorT<OneMaxEvalOp,Beagle::EvaluationOp::Alloc> Alloc;
//! OneMaxEvalOp handle type.
typedef Beagle::PointerT<OneMaxEvalOp,Beagle::EvaluationOp::Handle> Handle;
//! OneMaxEvalOp bag type.
typedef Beagle::ContainerT<OneMaxEvalOp,Beagle::EvaluationOp::Bag> Bag;

explicit OneMaxEvalOp() : EvaluationOp("OneMaxEvalOp") { }

virtual Fitness::Handle evaluate(Individual& inIndividual,
 Context& ioContext)

{
Beagle_AssertM(inIndividual.size() == 1);
GA::BitString::Handle lBitString = castHandleT<GA::BitString>
 (inIndividual[0]);
unsigned int lCount = 0;
for(unsigned int i=0; i<lBitString->size(); ++i) {
 if((*lBitString)[i] == true) ++lCount;
}
return new FitnessSimple(float(lCount));

}
};

122

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

void GA::PackageBitString::configure(System& ioSystem)
{
! Beagle_StackTraceBeginM();
! Factory& lFactory = ioSystem.getFactory();

! // Add available operators to the factory
! lFactory.insertAllocator("GA::CrossoverOnePointBitStrOp",
 new GA::CrossoverOnePointBitStrOp::Alloc);
! lFactory.insertAllocator("GA::CrossoverTwoPointsBitStrOp",
 new GA::CrossoverTwoPointsBitStrOp::Alloc);
! lFactory.insertAllocator("GA::CrossoverUniformBitStrOp",
 new GA::CrossoverUniformBitStrOp::Alloc);
! lFactory.insertAllocator("GA::InitBitStrOp",
 new GA::InitBitStrOp::Alloc);
! lFactory.insertAllocator("GA::InitBitStrRampedOp",
 new GA::InitBitStrRampedOp::Alloc);
! lFactory.insertAllocator("GA::MutationFlipBitStrOp",
 new GA::MutationFlipBitStrOp::Alloc);

! // Set some concept-type associations
! lFactory.setConcept("CrossoverOp", "GA::CrossoverUniformBitStrOp");
! lFactory.setConcept("Genotype", "GA::BitString");
! lFactory.setConcept("InitializationOp", "GA::InitBitStrOp");
! lFactory.setConcept("MutationOp", "GA::MutationFlipBitStrOp");

! Beagle_StackTraceEndM("void GA::PackageBitString::configure(System&)");
}

123

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

• OB is very flexible and very modular
✓ simple to use for predefined EAs

✓ all components can be redefined

✓ many other features not illustrated like introspection,
config files, checkpointing, logging, statistics, etc.

• But syntax is sometimes heavy

• Complexity stems from the limitations of
the underlying language: C++

124

Partial observations

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Example 2
Symbolic regression
• Representation:
✓ parsed tree of primitives

• Objective:
✓ minimize mean square error between the problem's

sample points and the "discovered" function

• Headers:
#include "beagle/GP.hpp"
#include "SymbRegEvalOp.hpp"

using namespace std;
using namespace Beagle;

125

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Specify the available
set of primitives
int main(int argc, char *argv[])
{
! try {
! ! // 0- Build set of primitives
! ! GP::PrimitiveSet::Handle lSet = new GP::PrimitiveSet;
! ! lSet->insert(new GP::Add);
! ! lSet->insert(new GP::Subtract);
! ! lSet->insert(new GP::Multiply);
! ! lSet->insert(new GP::Divide);
! ! lSet->insert(new GP::Sin);
! ! lSet->insert(new GP::Cos);
! ! lSet->insert(new GP::Exp);
! ! lSet->insert(new GP::Log);
! ! lSet->insert(new GP::TokenT<Double>("X"));
! ! lSet->insert(new GP::EphemeralDouble);

...

126

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

! ! ...
// 1- Build a system with the "constrained" GP package

! ! System::Handle lSystem = new System;
! ! lSystem->addPackage(new GP::PackageBase(lSet));
! ! lSystem->addPackage(new GP::PackageConstrained);

! ! // 2- Add data set for regression component
! ! lSystem->addComponent(new DataSetRegression);

! ! // 3- Add evaluation operator allocator
! ! lSystem->setEvaluationOp("SymbRegEvalOp",
 new SymbRegEvalOp::Alloc);
! ! // 4- Initialize the evolver
! ! Evolver::Handle lEvolver = new Evolver;
! ! lEvolver->initialize(lSystem, argc, argv);

! ! // 5- Create population
! ! Vivarium::Handle lVivarium = new Vivarium;

! ! // 6- Launch evolution
! ! lEvolver->evolve(lVivarium, lSystem);

! } catch(Exception& inException) {...}
! return 0;
}

127

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Fitness::Handle
SymbRegEvalOp::evaluate(GP::Individual& inIndividual,
 GP::Context& ioContext)
{
! double lSquareError = 0.;
! for(unsigned int i=0; i<mDataSet->size(); i++) {
! ! Beagle_AssertM((*mDataSet)[i].second.size() == 1);
! ! const Double lX((*mDataSet)[i].second[0]);
! ! setValue("X", lX, ioContext);
! ! const Double lY((*mDataSet)[i].first);
! ! Double lResult;
! ! inIndividual.run(lResult, ioContext);
! ! const double lError = lY-lResult;
! ! lSquareError += (lError*lError);
! }
! const double lMSE = lSquareError / mDataSet->size();
! const double lRMSE = sqrt(lMSE);
! const double lFitness = 1. / (1. + lRMSE);
! return new FitnessSimple(lFitness);
}

128

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

• Essentially, you need only to change the
package to include new operators

• These operators will split the population into
groups of individuals and distribute them to
worker nodes in order to evaluate their fitness

• The distribution process use MPI to
communicate with worker nodes

• Distribution is thus transparent, but not very
flexible

129

What about distributed
BEAGLE?

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Conclusion

• EAs are fundamentally simple, but writing EA
programs is not always easy
✓ frameworks are complex; documentation is not good enough

• Parts of EAs may be compute intensive, but most
of the code is complex glue

• Object oriented programming is good, but strongly
typed languages are a pain!
✓ higher level languages can significantly increase programmer

efficiency and thus lower prototype development time

• Task parallelism must be built-in the framework
from the start, not an afterthought!

130

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Part III: architecture

• Why Python?

• DTM: Distributed task Manager

• EAP: Evolutionary Algorithms in Python

• DTM+EAP=DEAP: Distributed
Evolutionary Algorithms in Python

• DEAP optimization and problem solving?

131

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Python language

• Object oriented; fully dynamic

• Coherent syntax

• High level data structures

• Extensive libraries to do mostly anything

• Easy interface to other programming
languages like C, C++ or java

• Supports UTF-8 out-of-the-box

• Very efficient glue language!

132

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Python's advantage?

• The language is so powerful and
straightforward that you can code your
own evolutionary algorithm explicitly
(almost like pseudo-code), and control
every detail of it!

• Or you can hide as much detail as you
want, like how to assign tasks to CPUs in
a parallel computer...

133

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

• Less lines of codes means:
✓ better readability

✓ less bugs

✓ better documentation!

• Python brings better matlab than
Matlab without having to pay for
licences!
✓ SciPy, NumPy & matPlotLib

• Want to write platform independent
GUIs with...
✓ Qt? FLTK? OpenGL?

• Want to communicate using...
✓ posix sockets? MPI?

• Want to build databases or web
services?

134

¿Hablas español?

2

No problema!

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Distributed Task
Manager (DTM)

• What we want to achieve:
✓ decide at one point in the code that some task(s)

should be executed by another process

✓ not worry about where the tasks will execute

✓ not worry about load balancing of tasks

✓ have the option of exploiting transparently anything
from a single processor to thousands of them

✓ for debugging, have the possibility of monitoring
what is going on!

135

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

What about performance?

• No free lunch!

• Real world EC problems have CPU intensive
components, but most of the more complex
lines of code are just glue representing a
small percentage of the total run time
✓ CPU intensive parts should not be coded in Python

• Python interfaces well with other languages

• Programmer/researcher time is much more
precious than computer time

136

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

What about task
granularity?

• No free lunch!

• We leave it to the user to experiment and
decide

• Obviously, it is a question of bandwidth
and latency
✓ you want relatively small communication overheads

137

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

What about
existing tools?
• Python has everything that is needed
✓ multithreading classes that run over native OS thread

✓ interface to C/C++ MPI

✓ "pickling" of objects for serialization of everything

✓ just need to write a little bit of glue ;-)

• Many tools have been developed
✓ Intel Cilk++ and Ct

✓ lots of grid stuff

✓ some in Python

• But nothing worth not writing our own

138

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Evil GIL!

• Also called Python's GIL of doom!
✓ GIL=Global Interpreter Lock

✓ threads are pre-empted

✓ but the interpreter cannot run them in parallel on
multicore computers

• Solution:
✓ use multiprocessing; one process per core

✓ in a "share nothing" architecture

✓ using message passing

139

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

140

DTM
architecture

tasks

results

task creation

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

• Contains...
✓ a unique ID

✓ the ID of its parent

✓ a task type label

✓ a creation, start, and ending time stamp

• Has a run method that receives an
argument list

141

class Task

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

• The "execution thread" handles the
currently running task

142

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

• The "pending execution queue" contains the
tasks that are waiting for execution

• It is a priority queue

143

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

• The "pending results queue" contains the
tasks that have been halted, because
they await some result(s)

144

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

• The "input/output MPI threads"
respectively run the MPI receive/send
commands

145

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

• Initializations

• If MPI rank = 1
✓ do some more initialization

✓ launch root task

✓ for example:
dtm.spawn(distributedGA, lTools, lPop, 0.5, 0.2, 40)

• Inside the root task (for example):
lChilds = [dtm.spawn(toolbox.evaluate, lInd) for lInd
in population]
lData = yield ('waitFor', lChilds)

146

User interface example

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

147

DTM
architecture

tasks

results

task creation

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

• Currently, once a task starts executing within a
given process, it will remain on that process until
completion

• But when a task is spawn, it is randomly assigned
to one of the processes that have lower loads

• Each a process communicates with another
process, they exchange historical load statistics

• For tasks in the pending execution queue, the
load is estimated using the task type label
✓ it is assumed that task with equal labels have similar run times

148

Load balancing

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Evolutionary Algorithms
in Python (EAP)
• Fitness
✓ just an array of floats

• Individual
✓ just a sequence (list) of stuff, and a fitness

• Population
✓ just a set (list) of either individuals or sub-populations

(demes)

• Toolbox
✓ just a bunch of registered operators that can be used by

the evolutionary algorithm

149

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Fitness

• A class derived from a simple array of
floats
class Fitness(array.array):

def isValid(self):
def invalidate(self):
def isDominated(self, other):

✓ works the same way for single or multiple values
(objectives)

150

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Maximize or minimize?

• The Fitness constructor has an optional
argument to assign weights to the
different objectives
✓ +1 (default) indicates that the corresponding

component should be maximized

✓ -1 indicates minimization

def __init__(self, weights=(-1.0,)):
self.mWeights = array.array('d', weights)

151

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Individual

• A container class derived from a list of
things; the kind of "things" being
specified by a generator function...
class Individual(list):

def __init__(self, size=0, generator=None,
 fitness=None):
 if fitness is not None:
 self.mFitness = fitness()
 for i in xrange(size):
 self.append(generator.next())

152

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Population

• A container class derived from a list of
"things"; the kind of things being
specified by an object...
class Population(list):
def __init__(self, size=0, generator=None):

for i in xrange(size):
 self.append(generator())

153

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Toolbox

• Just a factory to manufacture evolutionary
methods:
class Toolbox(object):

def register(self, methodName, method, *args, **kargs):
def unregister(self, methodName):

• Toolset examples:
def tournSel(individuals, n, tournSize=2):
def wheelSel(individuals, n):
def onePointCx(indOne, indTwo):
def twoPointsCx(indOne, indTwo):
def pmxCx(indOne, indTwo):
def flipBitMut(individual, prob):
def gaussMut(individual, sigma, prob):

154

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

import eap.base as base
import eap.toolbox as toolbox

create toolbox
lTools = toolbox.Toolbox()

populate toolbox with fitness, individual,
and population creators
lTools.register('fitness', base.Fitness,
 weights=(1.0,))
lTools.register('individual', base.Individual,
 size=100, fitness=lTools.fitness,
 generator=base.booleanGenerator())
lTools.register('population', base.Population,
 size=300, generator=lTools.individual)

create the initial population
lPop = lTools.population()

155

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

define the evaluation method
def evalOneMax(individual):

if not individual.mFitness.isValid():
individual.mFitness.append(individual.count(True))

populate toolbox with evolutionary operators
lTools.register('evaluate', evalOneMax)

lTools.register('crossover', toolbox.twoPointsCx)

lTools.register('mutate', toolbox.flipBitMut,
 flipIndxPb=0.05)

lTools.register('select', toolbox.tournSel,
 tournSize=3)

Evaluate the initial population
map(lTools.evaluate, lPop)

156

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

CXPB, MUTPB, NGEN = (0.5, 0.2, 40)

for g in range(NGEN):
 print 'Generation', g

 lPop[:] = lTools.select(lPop, n=len(lPop))

 # Apply crossover and mutation
 for i in xrange(1, len(lPop), 2):
 if random.random() < CXPB:
 lPop[i - 1], lPop[i] = lTools.crossover(lPop[i - 1], lPop[i])
 for i in xrange(len(lPop)):
 if random.random() < MUTPB:
 lPop[i] = lTools.mutate(lPop[i])

 # Evaluate the population
 map(lTools.evaluate, lPop)

 # Gather all the fitnesses in one list and print the stats
 lFitnesses = [lInd.mFitness[0] for lInd in lPop]
 print '\tMin Fitness :', min(lFitnesses)
 print '\tMax Fitness :', max(lFitnesses)
 print '\tMean Fitness :', sum(lFitnesses)/len(lFitnesses)

print 'End of evolution'

157

simple evolution
loop

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

OneMax short example

import eap.base as base
import eap.algorithms as algorithms
import eap.toolbox as toolbox

def evalOneMax(individual):
 if not individual.mFitness.isValid():
 individual.mFitness.append(individual.count(True))

lTools = toolbox.Toolbox()
lTools.register('fitness', base.Fitness, weights=(1.0,))
lTools.register('individual', base.Individual, size=100,
 fitness=lTools.fitness, generator=base.booleanGenerator())
lTools.register('population', base.Population, size=300,
 generator=lTools.individual)
lTools.register('evaluate', evalOneMax)
lTools.register('crossover', toolbox.twoPointsCx)
lTools.register('mutate', toolbox.flipBitMut, flipIndxPb=0.05)
lTools.register('select', toolbox.tournSel, tournSize=3)

lPop = lTools.population()
algorithms.simpleGA(lTools, lPop, cxPb=0.5, mutPb=0.2, nGen=40)

158

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

def simpleGA(toolbox, population, cxPb, mutPb, nGen):
Evaluate the initial population
map(toolbox.evaluate, population)
run the evolution loop
for g in range(nGen):

print 'Generation', g
population[:] = toolbox.select(population, n=len(population))
Apply crossover and mutation
for i in xrange(1, len(population), 2):
 if random.random() < cxPb:
 population[i - 1], population[i] = toolbox.crossover(population
 [i-1], population[i])
for i in xrange(len(population)):
 if random.random() < mutPb:
 population[i] = toolbox.mutate(population[i])
Evaluate the population
map(toolbox.evaluate, population)
Gather all of the fitness values in one list and print
statistics
lFitnesses = [lInd.mFitness[0] for lInd in population]
print '\tMin Fitness :', min(lFitnesses)
print '\tMax Fitness :', max(lFitnesses)
print '\tMean Fitness :', sum(lFitnesses)/len(lFitnesses)

print 'End of evolution'

159

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

from mpi4py import MPI
import eap.base as base
import eap.toolbox as toolbox

def evalOneMax(individual):
if not individual.mFitness.isValid():

yield individual.count(True)

if MPI.COMM_WORLD.Get_rank() == 0:
lTools = toolbox.Toolbox()
lTools.register('fitness', base.Fitness, weights=(1.0,))
lTools.register('individual', base.Individual, size=100,\
 fitness=lTools.fitness, generator=base.booleanGenerator())
lTools.register('population', base.Population, size=300,\
 generator=lTools.individual)

lTools.register('evaluate', evalOneMax)
lTools.register('crossover', toolbox.twoPointsCx)
lTools.register('mutate', toolbox.flipBitMut, flipIndxPb=0.05)
lTools.register('select', toolbox.tournSel, tournSize=3)

lPop = lTools.population()
dtm.spawn(distributedGA, lTools, lPop, 0.5, 0.2, 40)

160

DTM+EAP = DEAP

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

def distributedGA(toolbox, population, cxPb, mutPb, nGen):
Evaluate the population
map(toolbox.evaluate, population)

Begin the evolution
for g in range(nGen):

print 'Generation', g
population[:] = toolbox.select(population, n=len(population))

Apply crossover and mutation
for i in xrange(1, len(population), 2):
 if random.random() < cxPb:
 population[i - 1], population[i] = toolbox.crossover(population[i - 1],
 population[i])
for i, ind in enumerate(population):
 if random.random() < mutPb:
 population[i] = toolbox.mutate(ind)

Distribute the evaluation
lChilds = [dtm.spawn(toolbox.evaluate, lInd) for lInd in population]
lData = yield ('waitFor', lChilds)
for i, lID in enumerate(lChilds):
 population[i].mFitness.append(lData[lID])

Gather all fitness values in one list and print statistics
lFitnesses = [lInd.mFitness[0] for lInd in population]
print '\tMin Fitness :', min(lFitnesses)
print '\tMax Fitness :', max(lFitnesses)
print '\tMean Fitness :', sum(lFitnesses)/len(lFitnesses)

print 'End of evolution'

161

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

• Need to...
✓ build the set of primitives

✓ build the set of terminals

✓ define the evaluation function

✓ register everything

✓ and call the "simpleGA" algorithm

• Import modules:
import sympy
import random
import math
import eap.base as base
import eap.toolbox as toolbox
import eap.algorithms as algorithms

162

What about GP?

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Primitives and terminals

define primitives
def add(left, right):
 return left + right
def sub(left, right):
 return left - right
def mul(left, right):
 return left * right
def rdiv(left, right):
 return sympy.nsimplify(left/right)

def randomCte():
 return random.randint(-1,1)

add primitives and closures to their respective list
lFuncs = [add, sub, mul, rdiv]
defines symbols that will be used in the expression
lSymbols = [sympy.Symbol('x')]
define terminal set
lTerms = [sympy.Rational(1)]
add the symbols to the terminal set as 0-arity functions.
lTerms.extend([lambda: symb for symb in lSymbols])

163

the code on the
left uses the

"symbolic python"
module

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Toolbox initialization

lTools = toolbox.Toolbox()

lTools.register('fitness', base.Fitness, weights=(-1.0,))
lTools.register('expression', base.expressionGenerator,
 funcSet=lFuncs,termSet=lTerms, maxDepth=3)
lTools.register('individual', base.IndividualTree,
 fitness=lTools.fitness,
 generator=lTools.expression())
lTools.register('population', base.Population, size=100,
 generator=lTools.individual)

lTools.register('select', toolbox.tournSel, tournSize=3)
lTools.register('crossover', toolbox.uniformOnePtCxGP)
lTools.register('mutate', toolbox.uniformTreeMut,
 treeGenerator=lTools.expression, depthRange=(0,2))

164

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

def evalSymbReg(individual, symbols):
if not individual.mFitness.isValid():

Simplify the expression by collecting the terms
expr = individual.evaluate()
Transform expression in a callable function
lFuncExpr = sympy.lambdify(symbols, expr)
lDiff = 0
Evaluate the sum of squared difference
real function : x**4 + x**3 + x**2 + x + 1
for x in xrange(-100,100):
 x = x/100.
 try:
 lDiff += (lFuncExpr(x)-(x**4 + x**3 +
 x**2 + x + 1))**2
 except ZeroDivisionError:
 lDiff += ((x**4 + x**3 + x**2 + x + 1))**2

individual.mFitness.append(lDiff)

165

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

DEAP philosophy

• Transparent and minimalist design
✓ not a blackbox design!

✓ not bloated with specialized features,

✓ but generic enough to build sophisticated specialized
distributed evolutionary algorithms

✓ you want to visualize your complete evolutionary
algorithm on one page

✓ you are exposed to the level of details that you
decide

✓ you have complete control if you want it!

166

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

To do list

• This is a work in progress...
✓ implement multiobjective and co-evolution

✓ develop other advance algorithms

✓ develop utility functions like checkpointing and logging
(easy in Python), etc.

✓ develop monitoring tools for DTM

• Currently working on the project
✓ 1 undergraduate (part-time)

✓ 2 masters (part-time)

• Soon three or four PhDs will be using it for their research
projects

• Project started last summer; development is now ramping
up quickly!

167

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

168

Questions?

