Parallel and Distributed Tools for Evolutionary Computations

by Marc Parizeau, professor
Dep. of Electrical and Computer Engineering, Computer Vision and Systems Laboratory, Université Laval
and
Deputy Director of CLUMEQ

Outline

- Part I: fundamentals
- Part II: tools
\checkmark hardware: Colossus
\checkmark software
\checkmark Open BEAGLE
- Part III: architecture
\checkmark Distributed Task Manager (DTM)
\checkmark Evolutionary Algorithms in Python (EAP)
\checkmark DTM+EAP = DEAP computing!

Part I: fundamentals

- Evolutionary computations for artificial intelligence?
- Flavours of evolutionary Algorithms
- Multiobjective optimization
- Parallelism

Why should you care?

- Optimization problems are everywhere
- Computing optimal solutions is often intractable
\checkmark thus the need for approximate optimization methods that generate "acceptable" solutions in a "reasonable" amount of time
- Evolutionary Algorithms (EA) are good approximate problem solving methods
\checkmark generic in nature
\checkmark efficient for hard problems

Example 1 Traveling salesman

problem: finding the shortest «hamiltonian cycle» ? $>10^{81}$ possibilities (for 60 cities)

Example 2 Lens system design

- Lens systems are very much non-linear
- Design parameters include number of lenses, curvature, refractive indices, and spacings

c: curvature
n : refractive index
t: spacing
- Modelling should be based on the SnellDescartes formula:

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

- but, instead, uses the first order paraxial approximation that assumes light rays close to the optical axes:
$\sin \phi=\phi-\frac{\phi^{3}}{3!}+\frac{\phi^{5}}{5!}-\cdots$
let $\phi \approx 0 \Longrightarrow \sin \phi \approx \phi$.

$$
n_{1} \theta_{1} \approx n_{2} \theta_{2}
$$

- The five Seidel aberrations results from the difference between third and first order optics: spherical, coma, astigmatism, field curvature, and distortion.

$$
\sin \phi=\phi-\frac{\phi^{3}}{3!}+\frac{\phi^{5}}{5!}-\cdots
$$

Example 3
 Surveillance and protection

- For sensor networks
- Optimizing sensor placement to:
\checkmark maximize coverage
\checkmark minimize cost
\checkmark minimize intervention time
- Integrate with:
\checkmark sensor models
\checkmark geographical information systems

Part I: fundamentals

- Evolutionary computations for artificial intelligence?
- Flavours of evolutionary Algorithms
- Multiobjective optimization
- Parallelism

Evolutionary algorithms

- EAs are population based metaheuristics that can solve most any optimization problem
- They come in many flavours, including the following:
\checkmark Genetic Algorithms (GA)
\checkmark Evolutionary Strategies (ES)
\checkmark Evolutionary Programming (EP)
\checkmark Genetic Programming (GP)

Darwintheory

- Natural selection is the process by which heritable traits that make it more likely for an organism to survive and successfully reproduce become more common in a population over successive generations. It is a key mechanism of evolution.

High-level template

generational evolutionary algorithms

Main questions:

- What representations?
\checkmark sequential structure (bit or float)
\checkmark finite automaton
\checkmark tree structure
- What selection mechanism?
\checkmark roulette wheel
\checkmark tournaments
- What reproduction operators?
\checkmark mutation (unary operator)
\checkmark crossover (binary operator)
- What replacement strategy?
- What stopping criteria?

TABLE 3.4 Main Characteristics of the Different Canonical Evolutionary Algorithms: Genetic Algorithms and Evolution Strategies

Algorithm	Genetic Algorithms	Evolution Strategies
Developers	J. Holland	I. Rechenberg, H.-P. Schwefel
Original applications	Discrete optimization	Continuous optimization
Attribute features	Not too fast	Continuous optimization
Special features	Crossover, many variants	Fast, much theory
Representation	Binary strings	Real-valued vectors
Recombination	n-point or uniform	Discrete or intermediary
Mutation	Bit flipping	Gaussian
	\quad with fixed probability	perturbation
Selection	Fitness	Uniform
(parent selection)	proportional	random
Replacement	All children	(λ, μ)
(survivor selection)	replace parents	$(\lambda+\mu)$
Specialty	Emphasis	Self-adaptation
	on crossover	\quad of mutation step size

Table from Metaheuristics - From design to implementation

17		3rd International Seminar on New Issues in Artificial Intelligence CAOS - EVANNAI - GIAA - PLG / February 2010

TABLE 3.5 Main Characteristics of the Different Canonical Evolutionary Algorithms: Evolutionary Programming and Genetic Programming

Algorithm	Evolutionary Programming	Genetic Programming
Developers	D. Fogel	J. Koza
Original applications	Machine learning	Machine learning
Attribute features	-	Slow
Special features	No recombination	-
Representation	Finite-state machines	Parse trees
Recombination	No	Exchange of subtrees
Mutation	Gaussian	Random change
	perturbation	in trees
Selection	Deterministic	Fitness
		proportional
Replacement	Probabilistic	Generational
(survivor selection)	$\quad(\mu+\mu)$	replacement
Specialty	Self-adaptation	Need huge
		populations

Table from Metaheuristics - From design to implementation

18	LAVAL	3rd International Seminar on New Issues in Artificial Intelligence CAOS - EVANNAI - GIAA - PLG / February 2010

Genetic algorithms

- Representations
\checkmark binary strings
\checkmark sequence of integers / permutations
\checkmark vectors of floats
- Reproduction using crossover operations
- Mutations to promote diversity
- Generational replacement

Selection

wheel of fortune

$\operatorname{Prob}(j)=\frac{\text { Fitness }(j)}{\sum_{j=1}^{\operatorname{lmax}} \text { Fitness }(j)}$

tournaments

Étape 1 : Sélection aléatoire de deux individus Étape 3 : Gagnants du tournoi

Population initiale avant sélection

Individus sélectionnés (la population est à moitié remplie)

Fig. 3.6. One-point crossover

Fig. 3.7. n-point crossover: $n=2$

Illustration from Introduction to Evolutionary Computing

21	LAVAL	3rd International Seminar on New Issues in Artificial Intelligence CAOS - EVANNAI - GIAA - PLG / February 2010

Fig. 3.8. Uniform crossover. In this example the array $[0.35,0.62,0.18,0.42,0.83$, $0.76,0.39,0.51,0.36]$ of random numbers drawn uniformly from $[0,1)$ was used to decide inheritance

Fig. 3.9. Simple arithmetic recombination: $k=6, \alpha=1 / 2$

Fig. 3.10. Single arithmetic recombination: $k=8, \alpha=1 / 2$

Illustration from Introduction to Evolutionary Computing
23 3rd International Seminar on New Issues in Artificial Intelligence

Fig. 3.1. Bitwise mutation for binary encodings

Fig. 3.2. Swap mutation

Fig. 3.3. Insert mutation

Fig. 3.4. Scramble mutation

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\left.\begin{array}{|l|l|l|l|l|l|l|l|}\hline 1 & 5 & 4 & 3 & 2 & 6 & 7 & 8\end{array}\right)$

Fig. 3.5. Inversion mutation

Evolutionary Strategies

- Representation: vector of floats
- Crossover rarely used
- Continuous optimization using selfadaptation Gaussian mutations
- Special (μ, λ) or ($\mu+\lambda$) replacement strategy
$\checkmark \mu$ is the parents size
$\checkmark \lambda$ is the offsprings size

Basic ES template

Initialize a population of μ individuals;
Evaluate the μ individuals;
Repeat

- Generate λ offsprings from the μ parents;
- Evaluate the λ offsprings;
- Replace the population with μ individuals taken from parents and offsprings;
Until stopping criteria satisfied
Output best individual or population found

Gaussianemutations

- Consists in a random perturbation of the underlying vector

- Self-adapting correlation matrix

Covariance Matrix Adaptation (CMA-ES)

First generation

Second generation

Third generation

1 individual $=$ vector $\mathbf{x}+$ matrix $\boldsymbol{\Sigma}$

3rd International Seminar on New Issues in Artificial Intelligence CAOS - EVANNAI - GIAA - PLG / February 2010

Evolutionary programming

- Representation: finite-state automaton \checkmark binary or float
- Crossover rarely used
- Mutations
\checkmark bit flip or Gaussian
- $(\mu+\mu)$ replacement strategy
$\checkmark \mu$ is the parents size
$\checkmark \mu$ is the offsprings size

Fig. 5.2. Finite state machine as a predictor. The initial state of this FSM is C, and the given input string is 011101. The FSM's response is the output string 110111. On this string, its prediction performance is 60% (inputs 2,3 , and 6 correctly predicted)

Mutations operators

- Changing an output symbol
- Changing a state transition
- Adding a new state
- Deleting a state
- Changing the initial state

Gehetic progrà̉mming

- Representation: parse tree
- Recombinations and mutations operate on subtrees
- Generational replacement

```
2п + ((x+3)-y/(5+1)) (x^true) ) ((x\veey)\vee(z\leftrightarrow(x\wedgey)))
```


Fig. 6.2. Parse trees belonging to Eqs. (6.2) (left) and (6.3) (right)

```
i = 1;
while ( i < 20 )
{
    i = i+1;
}
```


Fig. 6.3. Parse tree belonging to the above program

parent

child

Fig. 6.5. GP mutation illustrated: the node designated by a circle in the tree on the left is selected for mutation. The subtree staring at that node is replaced by a randomly generated tree, which is a leaf here

Illustration from Introduction to Evolutionary Computing

36		3rd International Seminar on New Issues in Artificial Intelligence CAOS - EVANNAI - GIAA - PLG / February 2010

Fig. 6.6. GP crossover illustrated: the nodes designated by a circle in the parent trees are selected to serve as crossover points. The subtrees staring at those nodes are swapped, resulting in two new trees, which are the children

Primitive operations

- Tree branches correspond to elementary operations that can be applied on data to solve the problem at hand
\checkmark the user must specify the set of applicable primitives
- Tree leaves (terminals) are terminal symbols, that is input variables, constants, or random values
- Trees are generated by randomly picking primitives and terminals

Island model

－Demes are

 sub－population that evolve in isolation－Periodically， some travellers migrate from one deme to the other

Coevolution

－Two or more species that either compete or cooperate through evolution

FIGURE 3．26 Competitive coevolutionary algorithms based on the predator－prey model．

- The solution is the assembly of the different species
- individuals from the different species are randomly matched

FIGURE 3.27 A cooperative coevolutionary algorithm.
Illustration from Metaheuristics - From design to implementation

Exploration vs exploitation

- Evolutionary algorithms are good at exploring the solution space of the problem
\checkmark because of their parallel nature
- Local search method are good at exploiting local neighbourhoods
\checkmark but they get stuck in local optima

Hybrid methods

- Combining local search to EAs
- Memetic algorithms \checkmark adding a developmental learning phase within the evolutionary cycle

Fig. 10.3. Possible places to incorporate knowledge or other operators within the evolutionary cycle

Part I: fundamentals

- Evolutionary computations for artificial intelligence?
 - Flavours of evolutionary Algorithms
 - Multiobjective optimization
 - Parallelism

Multiobjective optimization

- Multicriteria decision making
\checkmark e.g. cost vs performance
- Pareto dominance
- Pareto front
- NSGA-II

Pareto dominance

- A vector of objectives $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)$ is said to dominate $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ iff no
component of \mathbf{v} is better then those of \mathbf{u} and at least one component of \mathbf{u} is better than the corresponding component of \mathbf{v}
$\forall i \in\{1, \ldots, n\}: u_{i} \leq v_{i} \wedge \exists i \in\{1, \ldots, n\}: u_{i}<v_{i}$

Crowding distance

\qquad

Non-dominated sorting (NSGA-II)

Part I: fundamentals

- Evolutionary computations for artificial intelligence?
- Flavours of evolutionary Algorithms
- Multiobjective optimization
- Parallelism

Shared vs distributed memory

FIGURE 6.16 Shared memory versus distributed memory architectures.

52	LAVAL	3rd International Seminar on New Issues in Artificial Intelligence CAOS - EVANNAI - GIAA - PLG / February 2010

Non-Uniform Memory Access (NUMA)

FIGURE 6.18 ccNUMA architectures combining shared and distributed memory architectures represent actually the most powerful machines (e.g., Earth Simulator, Cray X1, SGI Origin2000).

Off-the-shelf processors today are of the NUMA type!

For example, the new Intel Nehalem architecture (iCore 7)

Multithreading

- Multiple threads of execution within a single process
- All threads share the same memory space
- Requires synchronization locks to protect shared
 variables

[^0]
Memory wall

- High bandwidth
\checkmark to quickly transfer large messages
- Low latency
\checkmark to be able to send many short messages
start start sending receiving

Memory access balance

- Some architecture deliberately choose slower CPUs to better balance access time between shared and distributed memory
\checkmark for example the Blue Gene architecture from IBM

CPUs consume less power; so they can put more inside a cabinet!

Message Passing Interface (MPI)

- Standard specification for message passing libraries
\checkmark practical
\checkmark portable
\checkmark efficient
\checkmark flexible
- Interfaces in C, C++, and Fortran
\checkmark also some support for other languages

Program structure

MPI include file

- The same program runs on many process
- Each process has a unique ID called the MPI rank
- Messages can be send or received by ranks or by group of ranks

Declarations, prototypes, etc.
Program Begins
Serial code

Initialize MPI environment
Parallel code begins

Do work and make message passing calls

Terminate MPI Environment Parallel code ends
Serial code
Program Ends

Communicators

\qquad

MPI_COMM_WORLD

Buffering

Path of a message buffered at the receiving process

Blocking vs non blocking

- Blocking:

\checkmark a send will only return when it is safe to reuse the message buffer
\checkmark a receive only returns after data has arrived and is ready to use

- Non blocking:
\checkmark send and receive will return almost immediately
\checkmark if no data is available, receive returns with fail status
\checkmark user cannot predict when operations will be complete

0 $(0,0)$	1 $(0,1)$	2 $(0,2)$	3 $(0,3)$
4	5	6	7
$(1,0)$	$(1,1)$	$(1,2)$	$7,3)$ 8 $(2,0)$
$(2,1)$	10 $(2,2)$	11 $(2,3)$	
12	13		
$(3,0)$	$(3,1)$	14 $(3,2)$	15 $(3,3)$

Conclusion

- EAs are both powerful and diverse
- But they require much computational effort to solve real world problems
- However, they are also embarrassingly parallel!
- Great speedups are achievable using parallel architectures

Part II: tools

- Hardware: colossus
\checkmark CLUMEQ
- Software
\checkmark requirements
\checkmark survey
- Open BEAGLE

Hardware requirements

- EAs are compute intensive, \checkmark but embarrassingly parallel!
- Real world problems are hard, \checkmark because solution spaces are vast \checkmark and objectives are many
- Clock frequencies are not expected to increase, \checkmark but processors are now multicore
- Tools should be designed from the start to efficiently exploit parallelism
\checkmark I wish everything could be "automagic"!

CLUMEQ

- Consortium of 11 universities in the province of Québec, Canada

École de technologie supérieure

Compute Canada The national HPC platform

Québec site

- Silo of a decommissioned Van de Graaff particule accelerator
- Recycled as a cooling enclosure for a supercomputer

exterior view (circa 1965)

accelerator

control room

upper part

computer room

target room

Van de Graaff particle accelerator

Concept

- Unique in the world
- Compute racks arranged in a cylindrical topology
- Inner hot-air core
- Outer cold air ring-shape plenum
\checkmark low air velocity, because of high cross-section
\checkmark no corners to produce turbulence

Main specifications

- up to 56 standard size racks on 3 levels
- up to 1.2 megawatts of power \& cooling
- up to 132,500 CFM of blowing power
- very efficient cooling system \checkmark capable of recycling heat \checkmark capable of free air cooling

Colossus cluster

- Sun constellation system
$\checkmark 10$ fully loaded Sun Blade 6048, with X6275 modules (double Nehalem EP blade, $2.8 \mathrm{GHz}, 24 \mathrm{~GB}$ of RAM)
\checkmark full-bisection IB-QDR interconnect (2xM9 switches)
$\checkmark 1$ PB of Lustre storage in a high availability configuration, using 2 MDS and 9×2 OSS
\checkmark Sun 34400 storage arrays
- 40 infrastructure nodes
- 960 compute nodes
- 1920 CPU sockets (Nehalem-EP 2.8GHz)
- 7680 processor cores
- about 23 TB of RAM
- 500 TB of disk (will be upgraded to 1 PB)
- Full bisection $40 \mathrm{~Gb} / \mathrm{sec}$ networking between compute nodes (no bottlenecks)
- $10 \mathrm{~Gb} / \mathrm{sec}$ Ethernet to the university backbone

Sun Blade 6048 Shelf with x6275

Nehalem-EP Memory Flexibility

QNEM With x6275

Constellation 48-blade Rack (Sun Blade 6048) with QDR

- $42 \mathrm{U}, 24$ " wide integrated rack
- Four 12-blade shelves (24 Nodes / Shelf)
- Each shelf has a NEM with:
> 2 36-Port IS4 Switches
> 8 12x IB cables
- Front-to-rear airflow
- 91\% Efficient power supplies
- Redundant power \& cooling

Sun Magnum M9

High density, high scalability InfiniBand QDR switch

"Magnum 9 "

Densest 2 -tier CLOS switch using 36-p chips
> 576 QDR with 72-p CXP Line Card

- Max 648 QDR ports
> 41 Tbps total capacity
> 300ns latency (QDR)
Line Cards and Fabric Cards
>8 or 9 Line Cards
$>72-\mathrm{pCXP}$
> 9 Fabric Cards
11RU 19" Enclosure
$>$ Redundant Power and Cooling
$>7 \mathrm{~kW}$ power consumption

Management

$>$ Redundant hot-swap service processors
> External dual redundant subnet managers

12x Optical Active Cable

HA OSS Module - 9 Pairs (18 OSS)

Clumeq Overall Architecture - InfiniBand

Benchmarking

- Compute nodes:
$\checkmark 36.6<$ STREAM < 37.9 GB/s
\checkmark SPECint $=233$
$\checkmark 189$ < SPECfp < 190
- Interconnect:
\checkmark MPI ping-pong latency < 2 usec
\checkmark MPI ping-pong bandwidth $>3.1 \mathrm{~GB} / \mathrm{s}$
\checkmark MPI all-to-all bandwidth $>1.1 \mathrm{~GB} / \mathrm{s}$
\checkmark iPerf $>9.2 \mathrm{~Gb} / \mathrm{s}$
- Lustre file system (18 0ss):
\checkmark IOR read performance $=33.6 \mathrm{~GB} / \mathrm{s}$
\checkmark IOR write performance $=17.3 \mathrm{~GB} / \mathrm{s}$
\checkmark all over IB
- Boot time: 4 minutes 58 seconds
\checkmark all over IB
- Max power HPL: 332 kW

Processor Family / Systems
November 2009

Nehalem architecture

Memory access

INTEL'S CURRENT FOUR-SOCKET
PLATFORM

NEHALEM FOUR-SOCKET
PLATFORM

Operating system Family / Systems

November 2009

Interconnect Family / Systems

November 2009

Part II: tools

- Hardware: colossus \checkmark CLUMEQ
- Software
\checkmark requirements
\checkmark survey
- Open BEAGLE

READ tools

- Research through EA requires quick prototyping
- Tools should be:
\checkmark simple
\checkmark flexible
\checkmark well documented
\checkmark (reasonably) efficient
- KISS: Keep It Simple and Stupid!

Softwarerrequirements

- Code reuse
- Flexibility and adaptability
- Transparency
- Portability
- Ease of use and efficiency

Christian Gagné and Marc Parizeau, "Genericity in Evolutionary
Computation Software Tools: Principles and Case Study", International
Journal on Artificial Intelligence Tools, vol. 15, no 2, pp. 173-194, April 2006.

Survey

Genericity criteria	$\begin{aligned} & \text { ? } \\ & \text { ত } \\ & \text { In } \end{aligned}$		$\begin{aligned} & 0 \\ & \text { +i } \\ & \text { i } \\ & \text { ! } \\ & \underset{\sim}{K} \end{aligned}$	$\begin{aligned} & 7 \\ & -7 \\ & :=1 \\ & :=10 \end{aligned}$	$\begin{gathered} \text { N } \\ \underset{\sim}{n} \\ \underset{\sim}{0} \end{gathered}$	
Generic representation	2	2	2	0	0	2
Generic fitness	2	2	0	0	0	2
Generic operations	2	2	1	2	2	2
Generic evolutionary model	2	2	1	1	1	2
Parameter management	2	2	2	1	2	2
Configurable output	2	1	0	1	0	2

($2=$ complete, $1=$ partial, $0=$ missing $)$

Open BEAGLE

> Beagle Engine is an Advanced Genetic Learning Environment

Beagle est un
Environnement d' Apprentissage Génétique Logiciel Evolué
http://beagle.gel.ulaval.ca/

HMS Beagle

Framework

GA	GP	Other EC
Generic EC framework		
Object oriented foundations		
C++ Standard Template Library (STL)		

Intelligent pointer / reference counting


```
template <class T, class BaseType>
class PointerT : public BaseType {
public:
    inline T& operator*();
    inline T* operator->();
};
```


Base class

```
namespace Beagle {
class Object {
public:
    unsigned int getRefCounter() const;
    virtual bool isEqual(const Object&) const;
    virtual bool isLess(const Object&) const;
    virtual void read(XMLNode::Handle&);
    Object* refer();
    void unrefer();
    virtual void write(XMLStreamer&) const;
private:
    unsigned int mRefCounter;
};
}
```


Object factories

class Allocator : public Object \{ public:
virtual Object* allocate() const =0;
virtual Object* clone(const Object\&) const =0;
virtual void copy(Object\&, const Object\&) const =0; \};

Base type wrappers

C++ name	Wrapper name
bool	Bool
char	Char
double	Double
float	Float
int	Int
long	Long
short	Short
std: :string	String
unsigned char	UChar
unsigned int	UInt
unsigned long	ULong
unsigned short	UShort

Architecture

Examples

- One max problem
\checkmark simple bit string representation
\checkmark find the individual that has the maximum number of "ones"
\checkmark classical example of genetic algorithm
- Symbolic regression
\checkmark parse tree representation
\checkmark given a set of points corresponding to an unknown function, find the symbolic expression of this function
\checkmark classical example of genetic programming

BEAGLE examples

Example 1

 One max problem
- Representation:

\checkmark bit string

- Objective function:
\checkmark maximize number of one bits
- Headers:

```
#include "beagle/GA.hpp"
#include "OneMaxEvalOp.hpp"
using namespace std;
using namespace Beagle;
```



```
    int main(int argc, char** argv)
    {
    try {
    ! // 1- Build the system
    ! ! System::Handle lSystem = new System;
    ! ! // 2- Install the GA bit string package
    ! ! const unsigned int lNumberOfBits = 50;
    ! ! lSystem->addPackage(new GA::PackageBitString(lNumberOfBits));
    ! // 3- Add evaluation operator allocator
    ! ! lSystem->setEvaluationOp("OneMaxEvalOp", new OneMaxEvalOp::Alloc);
    ! // 4- Initialize the evolver
    ! Evolver::Handle lEvolver = new Evolver;
    ! lEvolver->initialize(lSystem, argc, argv);
    ! // 5- Create population
    ! Vivarium::Handle lVivarium = new Vivarium;
    ! // 6- Launch evolution
    ! lEvolver->evolve(lVivarium, lSystem);
    } catch(Exception& inException) {
    ! inException.terminate(cerr);
    }
    return 0;
}
```

```
class OneMaxEvalOp : public Beagle::EvaluationOp
{
public:
    //! OneMaxEvalOp allocator type.
    typedef Beagle::AllocatorT<OneMaxEvalOp,Beagle::EvaluationOp::Alloc> Alloc;
    //! OneMaxEvalOp handle type.
    typedef Beagle::PointerT<OneMaxEvalOp,Beagle::EvaluationOp::Handle> Handle;
    //! OneMaxEvalOp bag type.
    typedef Beagle::ContainerT<OneMaxEvalOp,Beagle::EvaluationOp::Bag> Bag;
    explicit OneMaxEvalOp() : EvaluationOp("OneMaxEvalOp") { }
    virtual Fitness::Handle evaluate(Individual& inIndividual,
                Context& ioContext)
    {
        Beagle_AssertM(inIndividual.size() == 1);
        GA::BitString::Handle lBitString = castHandleT<GA::BitString>
                                    (inIndividual[0]);
        unsigned int lCount = 0;
        for(unsigned int i=0; i<lBitString->size(); ++i) {
            if((*lBitString)[i] == true) ++lCount;
        }
        return new FitnessSimple(float(lCount));
    }
};
```

```
void GA::PackageBitString::configure(System& ioSystem)
{
! Beagle_StackTraceBeginM();
! Factory& lFactory = ioSystem.getFactory();
! // Add available operators to the factory
! lFactory.insertAllocator("GA:: CrossoverOnePointBitStrOp",
                                new GA::CrossoverOnePointBitStrOp::Alloc);
! lFactory.insertAllocator("GA::CrossoverTwoPointsBitStrOp",
                                    new GA::CrossoverTwoPointsBitStrOp::Alloc);
! lFactory.insertAllocator("GA::CrossoverUniformBitStrOp",
                                new GA::CrossoverUniformBitStrOp::Alloc);
! lFactory.insertAllocator("GA:: InitBitStrOp",
                                    new GA::InitBitStrOp::Alloc);
! lFactory.insertAllocator("GA::InitBitStrRampedOp",
                                new GA::InitBitStrRampedOp::Alloc);
! lFactory.insertAllocator("GA::MutationFlipBitStrOp",
                                    new GA::MutationFlipBitStrOp::Alloc);
! // Set some concept-type associations
! lFactory.setConcept ("CrossoverOp", "GA::CrossoverUniformBitStrOp");
! lFactory.setConcept("Genotype", "GA::BitString");
! lFactory.setConcept("InitializationOp", "GA::InitBitStrOp");
! lFactory.setConcept("MutationOp", "GA::MutationFlipBitStrOp");
! Beagle_StackTraceEndM("void GA::PackageBitString::configure(System&)");
}
```


Partial observations

- OB is very flexible and very modular \checkmark simple to use for predefined EAs \checkmark all components can be redefined
\checkmark many other features not illustrated like introspection, config files, checkpointing, logging, statistics, etc.
- But syntax is sometimes heavy
- Complexity stems from the limitations of the underlying language: C++

Example 2 Symbolic regression

- Representation:

\checkmark parsed tree of primitives

- Objective:
\checkmark minimize mean square error between the problem's sample points and the "discovered" function
- Headers:

```
#include "beagle/GP.hpp"
#include "SymbRegEvalOp.hpp"
using namespace std;
using namespace Beagle;
```


Specify the available set of primitives

```
int main(int argc, char *argv[])
{
try {
! ! // 0- Build set of primitives
! ! GP::PrimitiveSet::Handle lSet = new GP::PrimitiveSet;
! ! lSet->insert(new GP::Add);
! ! lSet->insert(new GP::Subtract);
! ! lSet->insert(new GP::Multiply);
! ! lSet->insert(new GP::Divide);
! ! lSet->insert(new GP::Sin);
! ! lSet->insert(new GP::Cos);
! ! lSet->insert(new GP::Exp);
! ! lSet->insert(new GP::Log);
! ! lSet->insert(new GP::TokenT<Double>("X"));
! ! lSet->insert(new GP::EphemeralDouble);
```

```
! ! ...
    // 1- Build a system with the "constrained" GP package
    ! ! System::Handle lSystem = new System;
    ! ! lSystem->addPackage(new GP::PackageBase(lSet));
    ! ! lSystem->addPackage(new GP::PackageConstrained);
    ! ! // 2- Add data set for regression component
    ! ! lSystem->addComponent (new DataSetRegression);
    ! ! // 3- Add evaluation operator allocator
    ! ! lSystem->setEvaluationOp("SymbRegEvalOp",
                                    new SymbRegEvalOp::Alloc);
    ! ! // 4- Initialize the evolver
    ! ! Evolver::Handle lEvolver = new Evolver;
    ! ! lEvolver->initialize(lSystem, argc, argv);
    ! ! // 5- Create population
    ! ! Vivarium::Handle lVivarium = new Vivarium;
    // 6- Launch evolution
    ! lEvolver->evolve(lVivarium, lSystem);
    } catch(Exception& inException) {...}
    return 0;
}
```

```
Fitness::Handle
SymbRegEvalOp::evaluate(GP::Individual& inIndividual,
                    GP::Context& ioContext)
{
double lSquareError = 0.;
for(unsigned int i=0; i<mDataSet->size(); i++) {
! Beagle_AssertM((*mDataSet)[i].second.size() == 1);
! ! const Double lX((*mDataSet)[i].second[0]);
! ! setValue("X", lX, ioContext);
! ! const Double lY((*mDataSet)[i].first);
! ! Double lResult;
! ! inIndividual.run(lResult, ioContext);
! const double lError = lY-lResult;
! lSquareError += (lError*lError);
}
const double lMSE = lSquareError / mDataSet->size();
const double lRMSE = sqrt(lMSE);
const double lFitness = 1. / (1. + lRMSE);
return new FitnessSimple(lFitness);
}
```


What about distributed BEAGLE?

- Essentially, you need only to change the package to include new operators
- These operators will split the population into groups of individuals and distribute them to worker nodes in order to evaluate their fitness
- The distribution process use MPI to communicate with worker nodes
- Distribution is thus transparent, but not very flexible

Conclusion

- EAs are fundamentally simple, but writing EA programs is not always easy
\checkmark frameworks are complex; documentation is not good enough
- Parts of EAs may be compute intensive, but most of the code is complex glue
- Object oriented programming is good, but strongly typed languages are a pain!
\checkmark higher level languages can significantly increase programmer efficiency and thus lower prototype development time
- Task parallelism must be built-in the framework from the start, not an afterthought!

Part IIIy|architecture

- Why Python?
- DTM: Distributed task Manager
- EAP: Evolutionary Algorithms in Python
- DTM+EAP = DEAP: Distributed

Evolutionary Algorithms in Python

- DEAP optimization and problem solving?

Python language

- Object oriented; fully dynamic
- Coherent syntax
- High level data structures
- Extensive libraries to do mostly anything
- Easy interface to other programming languages like C, C++ or java
- Supports UTF-8 out-of-the-box
- Very efficient glue language!

Python's advantage?

- The language is so powerful and straightforward that you can code your own evolutionary algorithm explicitly (almost like pseudo-code), and control every detail of it!
- Or you can hide as much detail as you want, like how to assign tasks to CPUs in a parallel computer...
- Less lines of codes means:
\checkmark better readability
\checkmark less bugs
\checkmark better documentation!
- Python brings better matlab than Matlab without having to pay for licences!
\checkmark SciPy, NumPy \& matPlotLib
- Want to write platform independent GUIs with...
\checkmark Qt? FLTK? OpenGL?
- Want to communicate using... \checkmark posix sockets? MPI?

- Want to build databases or web services?

Distributed Task Manager (DTM)

- What we want to achieve:
\checkmark decide at one point in the code that some task(s) should be executed by another process
\checkmark not worry about where the tasks will execute
\checkmark not worry about load balancing of tasks
\checkmark have the option of exploiting transparently anything from a single processor to thousands of them
\checkmark for debugging, have the possibility of monitoring what is going on!

Whatiabout performance?

- No free lunch!
- Real world EC problems have CPU intensive components, but most of the more complex lines of code are just glue representing a small percentage of the total run time
\checkmark CPU intensive parts should not be coded in Python
- Python interfaces well with other languages
- Programmer/researcher time is much more precious than computer time

What labout task granularity?

- No free lunch!
- We leave it to the user to experiment and decide
- Obviously, it is a question of bandwidth and latency
\checkmark you want relatively small communication overheads

What about existing tools?

- Python has everything that is needed
\checkmark multithreading classes that run over native OS thread
\checkmark interface to C/C++ MPI
\checkmark "pickling" of objects for serialization of everything
\checkmark just need to write a little bit of glue ;-)
- Many tools have been developed
\checkmark Intel Cilk++ and Ct
\checkmark lots of grid stuff
\checkmark some in Python
- But nothing worth not writing our own

Evil GIL!

- Also called Python's GIL of doom!
\checkmark GIL=Global Interpreter Lock
\checkmark threads are pre-empted
\checkmark but the interpreter cannot run them in parallel on multicore computers
- Solution:
\checkmark use multiprocessing; one process per core
\checkmark in a "share nothing" architecture
\checkmark using message passing

139 䮄園 unversit CAOS - EVANNAI - GIAA - PLG / February 2010

class Task

- Contains...
\checkmark a unique ID
\checkmark the ID of its parent
\checkmark a task type label
\checkmark a creation, start, and ending time stamp
- Has a run method that receives an argument list
- The "execution thread" handles the currently running task

- The "pending execution queue" contains the tasks that are waiting for execution
- It is a priority queue

- The "pending results queue" contains the tasks that have been halted, because they await some result(s)

- The "input/output MPI threads" respectively run the MPI receive/send commands

User interface example

- Initializations
- If MPI rank = 1
\checkmark do some more initialization
\checkmark launch root task
\checkmark for example:
dtm.spawn (distributedGA, lTools, lPop, 0.5, 0.2, 40)
- Inside the root task (for example):
lChilds $=$ [dtm.spawn (toolbox.evaluate, lind) for lind in population]
lData = yield ('waitFor', lChilds)

Load balancing

- Currently, once a task starts executing within a given process, it will remain on that process until completion
- But when a task is spawn, it is randomly assigned to one of the processes that have lower loads
- Each a process communicates with another process, they exchange historical load statistics
- For tasks in the pending execution queue, the load is estimated using the task type label \checkmark it is assumed that task with equal labels have similar run times

Evolutionary Algorithms in Python (EAP)

- Fitness

\checkmark just an array of floats

- Individual
\checkmark just a sequence (list) of stuff, and a fitness
- Population
\checkmark just a set (list) of either individuals or sub-populations (demes)
- Toolbox
\checkmark just a bunch of registered operators that can be used by the evolutionary algorithm

Fitness

- A class derived from a simple array of floats
class Fitness (array.array):
def isValid(self):
def invalidate(self):
def isDominated (self, other):
\checkmark works the same way for single or multiple values (objectives)

Maximize or minimize?

- The Fitness constructor has an optional argument to assign weights to the different objectives
$\checkmark+1$ (default) indicates that the corresponding component should be maximized
$\checkmark-1$ indicates minimization
def __init__(self, weights=(-1.0,)): self.mWeights = array.array('d', weights)

Individuah

- A container class derived from a list of things; the kind of "things" being specified by a generator function...

```
class Individual(list):
def __init__(self, size=0, generator=None,
                                fitness=None) :
    if fitness is not None:
        self.mFitness = fitness()
        for i in xrange(size):
        self.append(generator.next())
```


Population

- A container class derived from a list of "things"; the kind of things being specified by an object...

```
class Population(list):
def __init__(self, size=0, generator=None):
    for i in xrange(size):
        self.append(generator())
```


Toolbox

- Just a factory to manufacture evolutionary methods:

```
class Toolbox(object):
    def register(self, methodName, method, *args, **kargs):
    def unregister(self, methodName):
```

- Toolset examples:
def tournSel(individuals, n, tournSize=2):
def wheelSel (individuals, n):
def onePointCx(indOne, indTwo):
def twoPointsCx(indOne, indTwo):
def pmxCx (indOne, indTwo):
def flipBitMut(individual, prob):
def gaussMut(individual, sigma, prob):

```
    import eap.base as base
    import eap.toolbox as toolbox
    # create toolbox
    lTools = toolbox.Toolbox()
    # populate toolbox with fitness, individual,
    # and population creators
    lTools.register('fitness', base.Fitness,
    weights=(1.0,))
lTools.register('individual', base.Individual,
                        size=100, fitness=lTools.fitness,
                        generator=base.booleanGenerator())
lTools.register('population', base.Population,
                        size=300, generator=lTools.individual)
# create the initial population
lPop = lTools.population()
```


\# define the evaluation method def evalOneMax(individual):
if not individual.mFitness.isValid(): individual.mFitness.append(individual.count(True))
\# populate toolbox with evolutionary operators lTools.register('evaluate', evalOneMax)
lTools.register('crossover', toolbox.twoPointsCx)
lTools.register('mutate', toolbox.flipBitMut, flipIndxPb=0.05)
lTools.register('select', toolbox.tournSel, tournSize=3)
\# Evaluate the initial population map(lTools.evaluate, lPop)

```
CXPB, MUTPB, NGEN = (0.5, 0.2, 40)
for g in range(NGEN):
    print 'Generation', g
simple evolution
                                    loop
```

 lPop[:] = lTools.select(lPop, \(n=l e n(l P o p))\)
 \# Apply crossover and mutation
 for i in xrange(1, len(lPop), 2):
 if random.random() < CXPB:
 lPop[i - 1], lPop[i] = lTools.crossover(lPop[i - 1], lPop[i])
 for i in xrange(len(lPop)):
 if random.random() < MUTPB:
 lPop[i] = lTools.mutate(lPop[i])
 \# Evaluate the population
 map(lTools.evaluate, lPop)
 \# Gather all the fitnesses in one list and print the stats
 lFitnesses \(=\) [lInd.mFitness[0] for lInd in lPop]
 print '\tMin Fitness :', min(lFitnesses)
 print '\tMax Fitness :', max(lFitnesses)
 print '\tMean Fitness :', sum(lFitnesses)/len(lFitnesses)
 print 'End of evolution'

OneMax short example

```
import eap.base as base
import eap.algorithms as algorithms
import eap.toolbox as toolbox
def evalOneMax(individual):
    if not individual.mFitness.isValid():
        individual.mFitness.append(individual.count(True))
lTools = toolbox.Toolbox()
lTools.register('fitness', base.Fitness, weights=(1.0,))
lTools.register('individual', base.Individual, size=100,
    fitness=lTools.fitness, generator=base.booleanGenerator())
lTools.register('population', base.Population, size=300,
    generator=lTools.individual)
lTools.register('evaluate', evalOneMax)
lTools.register('crossover', toolbox.twoPointsCx)
lTools.register('mutate', toolbox.flipBitMut, flipIndxPb=0.05)
lTools.register('select', toolbox.tournSel, tournSize=3)
lPop = lTools.population()
algorithms.simpleGA(lTools, lPop, cxPb=0.5, mutPb=0.2, nGen=40)
```

```
def simpleGA(toolbox, population, cxPb, mutPb, nGen):
    # Evaluate the initial population
    map(toolbox.evaluate, population)
    # run the evolution loop
    for g in range(nGen):
        print 'Generation', g
        population[:] = toolbox.select(population, n=len(population))
        # Apply crossover and mutation
        for i in xrange(1, len(population), 2):
            if random.random() < cxPb:
            population[i - 1], population[i] = toolbox.crossover(population
            [i-1], population[i])
        for i in xrange(len(population)):
            if random.random() < mutPb:
            population[i] = toolbox.mutate(population[i])
        # Evaluate the population
        map(toolbox.evaluate, population)
        # Gather all of the fitness values in one list and print
        statistics
        lFitnesses = [lInd.mFitness[0] for lInd in population]
        print '\tMin Fitness :', min(lFitnesses)
        print '\tMax Fitness :', max(lFitnesses)
        print '\tMean Fitness :', sum(lFitnesses)/len(lFitnesses)
    print 'End of evolution'
```


DTM+EAP = DEAP

```
from mpi4py import MPI
import eap.base as base
import eap.toolbox as toolbox
def evalOneMax(individual):
    if not individual.mFitness.isValid():
        yield individual.count(True)
if MPI.COMM_WORLD.Get_rank() == 0:
    lTools = toolbox.Toolbox()
    lTools.register('fitness', base.Fitness, weights=(1.0,))
    lTools.register('individual', base.Individual, size=100,\
                fitness=lTools.fitness, generator=base.booleanGenerator())
    lTools.register('population', base.Population, size=300,\
                generator=lTools.individual)
    lTools.register('evaluate', evalOneMax)
    lTools.register('crossover', toolbox.twoPointsCx)
    lTools.register('mutate', toolbox.flipBitMut, flipIndxPb=0.05)
    lTools.register('select', toolbox.tournSel, tournSize=3)
    lPop = lTools.population()
    dtm.spawn(distributedGA, lTools, lPop, 0.5, 0.2, 40)
```

```
def distributedGA(toolbox, population, cxPb, mutPb, nGen):
    # Evaluate the population
    map(toolbox.evaluate, population)
    # Begin the evolution
    for g in range(nGen):
        print 'Generation', g
        population[:] = toolbox.select(population, n=len(population))
        # Apply crossover and mutation
        for i in xrange(1, len(population), 2):
            if random.random() < cxPb:
            population[i - 1], population[i] = toolbox.crossover(population[i - 1],
                                    population[i])
        for i, ind in enumerate(population):
            if random.random() < mutPb:
            population[i] = toolbox.mutate(ind)
        # Distribute the evaluation
        lChilds = [dtm.spawn(toolbox.evaluate, lInd) for lInd in population]
        lData = yield ('waitFor', lChilds)
        for i, lID in enumerate(lChilds):
            population[i].mFitness.append(lData[lID])
        # Gather all fitness values in one list and print statistics
        lFitnesses = [lInd.mFitness[0] for lInd in population]
        print '\tMin Fitness :', min(lFitnesses)
        print '\tMax Fitness :', max(lFitnesses)
        print '\tMean Fitness :', sum(lFitnesses)/len(lFitnesses)
    print 'End of evolution'
```


What about GP?

- Need to...
\checkmark build the set of primitives
\checkmark build the set of terminals
\checkmark define the evaluation function
\checkmark register everything
\checkmark and call the "simpleGA" algorithm
- Import modules:

```
import sympy
import random
import math
import eap.base as base
import eap.toolbox as toolbox
import eap.algorithms as algorithms
```


Primitives and terminals

```
# define primitives
def add(left, right):
    return left + right
def sub(left, right):
    return left - right
def mul(left, right):
    return left * right
def rdiv(left, right):
    return sympy.nsimplify(left/right)
def randomCte():
    return random.randint(-1,1)
# add primitives and closures to their respective list
lFuncs = [add, sub, mul, rdiv]
# defines symbols that will be used in the expression
lSymbols = [sympy.Symbol('x')]
# define terminal set
lTerms = [sympy.Rational(1)]
# add the symbols to the terminal set as 0-arity functions.
lTerms.extend([lambda: symb for symb in lSymbols])
```


Toolboxsinitialization

```
lTools = toolbox.Toolbox()
lTools.register('fitness', base.Fitness, weights=(-1.0,))
lTools.register('expression', base.expressionGenerator,
        funcSet=lFuncs,termSet=lTerms, maxDepth=3)
lTools.register('individual', base.IndividualTree,
    fitness=lTools.fitness,
    generator=lTools.expression())
lTools.register('population', base.Population, size=100,
    generator=lTools.individual)
lTools.register('select', toolbox.tournSel, tournSize=3)
lTools.register('crossover', toolbox.uniformOnePtCxGP)
lTools.register('mutate', toolbox.uniformTreeMut,
    treeGenerator=lTools.expression, depthRange=(0,2))
```

```
def evalSymbReg(individual, symbols):
    if not individual.mFitness.isValid():
        # Simplify the expression by collecting the terms
        expr = individual.evaluate()
        # Transform expression in a callable function
        lFuncExpr = sympy.lambdify(symbols, expr)
        lDiff = 0
        # Evaluate the sum of squared difference
        # real function : x**4 + x**3 + x**2 + x + 1
        for x in xrange(-100,100):
            x = x/100.
            try:
                lDiff += (lFuncExpr(x)-(x**4 + x**3 +
                    x**2 + x + 1))**2
        except ZeroDivisionError:
                lDiff += ((x**4 + x**3 + x**2 + x + 1))**2
```

 individual.mFitness.append(lDiff)

DEAP philosophy

- Transparent and minimalist design
\checkmark not a blackbox design!
\checkmark not bloated with specialized features,
\checkmark but generic enough to build sophisticated specialized distributed evolutionary algorithms
\checkmark you want to visualize your complete evolutionary algorithm on one page
\checkmark you are exposed to the level of details that you decide
\checkmark you have complete control if you want it!

To do list

- This is a work in progress...
\checkmark implement multiobjective and co-evolution
\checkmark develop other advance algorithms
\checkmark develop utility functions like checkpointing and logging (easy in Python), etc.
\checkmark develop monitoring tools for DTM
- Currently working on the project
$\checkmark 1$ undergraduate (part-time)
$\checkmark 2$ masters (part-time)
- Soon three or four PhDs will be using it for their research projects
- Project started last summer; development is now ramping up quickly!

Questions?

[^0]: Illustration from Metaheuristics - From design to implementation

