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Outline

• Part I: fundamentals

• Part II: tools
✓ hardware: Colossus

✓ software

✓ Open BEAGLE

• Part III: architecture
✓ Distributed Task Manager (DTM)

✓ Evolutionary Algorithms in Python (EAP)

✓ DTM+EAP = DEAP computing!
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Part I: fundamentals

• Evolutionary computations for artificial 
intelligence?

• Flavours of evolutionary Algorithms

• Multiobjective optimization

• Parallelism
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An excellent book 
that covers 

metaheuristics in 
general, including 

evolutionary 
algorithms...



Another good book 
that covers 

everything that 
you want to know 
about evolutionary 

algorithms...
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Why should you care?

• Optimization problems are everywhere

• Computing optimal solutions is often 
intractable
✓ thus the need for approximate optimization methods that 

generate "acceptable" solutions in a "reasonable" amount 
of time

• Evolutionary Algorithms (EA) are good 
approximate problem solving methods
✓ generic in nature

✓ efficient for hard problems
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Example 1
Traveling salesman 
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problem: finding the shortest «hamiltonian cycle» ?
> 1081 possibilities (for 60 cities)
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Example 2
Lens system design
• Lens systems are very much non-linear

• Design parameters include number of 
lenses, curvature, refractive indices, and 
spacings
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Fig. 1. Parameters of a two-lens system: nj represents the refractive index of a
media, cj a lens surface curvature, t1 and t3 are the lens thicknesses, and t2 is the
lens spacing.
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Fig. 2. Illustration of Snell-Descartes first law of refraction.

law of refraction (Snell-Descartes) that governs the behavior of light passing

through the interface between two media having different refractive indices.

The path of a ray passing from medium 1 to medium 2 obeys the following

equation:

n1 sin θ1 = n2 sin θ2 (1)

where n1 and n2 are refractive indices of media 1 and 2, and θ1 and θ2 are

incident and refracted angles relative to the normal of the interface between

the two media. Figure 2 illustrates this first law of refraction. On the other

hand, the paraxial approximation consists in assuming that all rays lie close

to the optical axis. Using the sine expansion:

sin φ = φ− φ3

3!
+

φ5

5!
− · · · (2)

and let φ ≈ 0 =⇒ sin φ ≈ φ. Equation 1 becomes:

n1θ1 ≈ n2θ2 (3)

5

c: curvature
n: refractive index
t: spacing
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• Modelling should be based on the Snell-
Descartes formula:

• but, instead, uses the first order paraxial 
approximation that assumes light rays 
close to the optical axes:
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Fig. 1. Parameters of a two-lens system: nj represents the refractive index of a
media, cj a lens surface curvature, t1 and t3 are the lens thicknesses, and t2 is the
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• The five Seidel aberrations results from 
the difference between third and first 
order optics: spherical, coma, 
astigmatism, field curvature, and 
distortion.
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Fig. 3. Two of the Seidel aberrations: a) spherical aberration, and b) distortion.

This approximation is the basis of Gauss optics or first order optics.

The aberrations of an optical system are measured by computing the differ-

ence between the real image (i.e. the one that stems from Equation 1), and the

image that results from the paraxial approximation. In other words, two ray

traces emerging from the same point on the object with the same (non-zero)

angle, one exact and one approximated
1
, will strike the image plane at dif-

ferent positions. These differences, averaged over a whole set of distinct rays

provide a convenient basis for building a quality measure.

It is interesting to note that if we also consider the second term of the sine

expansion in Equation 2, we obtain what is called third order optics. The dif-

ference between first and third order optics represents the five Seidel aberra-

tions: spherical aberration, coma, astigmatism, field curvature, and distortion

[10]. Figure 3 illustrates two of these. The spherical aberration (Figure 3a)

is caused by the fact that, for spherical lenses, rays coming from infinity and

parallel to the optical axis do not converge to the same focus point, depending

on the ray distance from the optical axis. The result of this type of aberration

is a blurred image. Another type of aberration is distortion, that causes pin-

cushion (positive distortion) or barrel (negative distortion) shaped images, as

shown in Figure 3b.

Finally, it should be noted that the refractive index of a given glass is not

constant but varies as a function of the light wavelength. The refractive index

value found in the literature is usually the refractive index value of the material

at the Helium d wavelength (λ = 587.6 nm). Also, the refractive index rate of

change with the wavelength is different from one glass to another. It is standard

to characterize the dispersion property of a given glass using a measure called

the v-number (or Abbe number). This measure is simply a relative rate of

change of the refractive index, calculated using the refractive index of the

material at three arbitrary wavelengths. The v-number of glasses is a factor

that should be taken into account when designing polychromatic lens systems.

1 The approximated ray trace is virtual and computed with Gauss optics.
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spherical aberration

Christian Gagné, Julie Beaulieu, Marc Parizeau and Simon Thibault, "Human-Competitive Lens System 
Design with Evolution Strategies", Applied Soft Computing, September 2008.
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Example 3
Surveillance and protection

• For sensor networks

• Optimizing sensor placement to:
✓ maximize coverage

✓ minimize cost

✓ minimize intervention time

• Integrate with:
✓ sensor models

✓ geographical information systems
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Part I: fundamentals

• Evolutionary computations for artificial 
intelligence?

• Flavours of evolutionary Algorithms

• Multiobjective optimization

• Parallelism
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Evolutionary algorithms

• EAs are population based metaheuristics 
that can solve most any optimization 
problem

• They come in many flavours, including 
the following:
✓ Genetic Algorithms (GA)

✓ Evolutionary Strategies (ES)

✓ Evolutionary Programming (EP)

✓ Genetic Programming (GP)
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3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Darwin theory

• Natural selection is the process by 
which heritable traits that make it more 
likely for an organism to survive and 
successfully reproduce become more 
common in a population over successive 
generations. It is a key mechanism of 
evolution.
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High-level template
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generational evolutionary algorithms

Illustration from Metaheuristics - From design to implementation
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Main questions:

• What representations?
✓ sequential structure (bit or float)

✓ finite automaton 

✓ tree structure

• What selection mechanism?
✓ roulette wheel

✓ tournaments

• What reproduction operators?
✓ mutation (unary operator)

✓ crossover (binary operator)

• What replacement strategy?

• What stopping criteria?

16
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Table from Metaheuristics - From design to implementation
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Table from Metaheuristics - From design to implementation



3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Genetic algorithms

• Representations
✓ binary strings

✓ sequence of integers / permutations

✓ vectors of floats

• Reproduction using crossover operations

• Mutations to promote diversity

• Generational replacement 

19
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Selection

20
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à deux individus 

Étape 3 : Gagnants du tournoi  Étape 1 : Sélection aléatoire de deux individus  
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Illustration from Introduction to Evolutionary Computing
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Illustration from Introduction to Evolutionary Computing
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Illustration from Introduction to Evolutionary Computing
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Illustration from Introduction to Evolutionary Computing
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Illustration from Introduction to Evolutionary Computing
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Evolutionary Strategies

• Representation: vector of floats

• Crossover rarely used

• Continuous optimization using self-
adaptation Gaussian mutations

• Special (µ,!) or (µ+!) replacement 
strategy
✓ µ is the parents size

✓ ! is the offsprings size

26
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Basic ES template

27

Initialize a population of μ individuals;
Evaluate the μ individuals;
Repeat

- Generate λ offsprings from the μ parents;
- Evaluate the λ offsprings;
- Replace the population with μ individuals 
taken from parents and offsprings;

Until stopping criteria satisfied
Output best individual or population found
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Gaussian mutations

28

• Consists in a random perturbation of the 
underlying vector 

• Self-adapting correlation matrix

uncorrelated
single "

uncorrelated
diagonal #

correlated
full #
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Covariance Matrix 
Adaptation (CMA-ES)

29

1 individual = vector x + matrix ! 
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Evolutionary 
programming

• Representation: finite-state automaton
✓ binary or float

• Crossover rarely used

• Mutations
✓ bit flip or Gaussian

• (µ+µ) replacement strategy
✓ µ is the parents size

✓ µ is the offsprings size

30
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Illustration from Introduction to Evolutionary Computing
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• Changing an output symbol

• Changing a state transition

• Adding a new state

• Deleting a state

• Changing the initial state

32

Mutations operators



3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Genetic programming

• Representation: parse tree

• Recombinations and mutations operate 
on subtrees

• Generational replacement

33
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2! + ((x+3) - y/(5+1)) (x⋀true)"((x⋁y)⋁(z#(x⋀y)))

Illustration from Introduction to Evolutionary Computing
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i = 1;
while ( i < 20 )
{

i = i+1;
}

Illustration from Introduction to Evolutionary Computing
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Illustration from Introduction to Evolutionary Computing
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Illustration from Introduction to Evolutionary Computing
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• Tree branches correspond to elementary 
operations that can be applied on data to 
solve the problem at hand
✓ the user must specify the set of applicable primitives

• Tree leaves (terminals) are terminal 
symbols, that is input variables, constants, 
or random values

• Trees are generated by randomly picking 
primitives and terminals 

38

Primitive operations
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• Demes are 
sub-population 
that evolve in 
isolation

• Periodically, 
some travellers 
migrate from 
one deme to 
the other

39

Island model

deme 1 

2 Migrants 
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Coevolution

40

• Two or more species that either compete 
or cooperate through evolution

Illustration from Metaheuristics - From design to implementation
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• The solution is the assembly 
of the different species

• individuals from the different 
species are randomly matched

Illustration from Metaheuristics - From design to implementation
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Exploration vs 
exploitation

• Evolutionary algorithms are good at 
exploring the solution space of the 
problem
✓ because of their parallel nature

• Local search method are good at 
exploiting local neighbourhoods
✓ but they get stuck in local optima

42
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Hybrid methods

• Combining local 
search to EAs

• Memetic 
algorithms
✓ adding a 

developmental 
learning phase 
within the 
evolutionary cycle 
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Illustration from Introduction to Evolutionary Computing
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Part I: fundamentals

• Evolutionary computations for artificial 
intelligence?

• Flavours of evolutionary Algorithms

• Multiobjective optimization

• Parallelism
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Multiobjective 
optimization

• Multicriteria decision making
✓ e.g. cost vs performance

• Pareto dominance

• Pareto front

• NSGA-II

45

• A vector of objectives u=(u1,...,un) is said 
to dominate v=(v1,...,vn) iff no 
component of v is better then those of u 
and at least one component of u is better 
than the corresponding component of v

∀i ∈ {1, . . . , n} : ui ≤ vi ∧ ∃i ∈ {1, . . . , n} : ui < vi
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Pareto dominance

46
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4820

multiobjective optimization
is pushing on the Pareto front 

towards the origin
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Crowding distance

49
13 Distance de crowding, les points noirs sont des soluti
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Non-dominated sorting
(NSGA-II)
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Part I: fundamentals

• Evolutionary computations for artificial 
intelligence?

• Flavours of evolutionary Algorithms

• Multiobjective optimization

• Parallelism
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Shared vs distributed 
memory

52

Illustration from Metaheuristics - From design to implementation
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Non-Uniform Memory 
Access (NUMA)

53

Illustration from Metaheuristics - From design to implementation

Off-the-shelf 
processors 

today are of 
the NUMA 

type!

For example, 
the new Intel 

Nehalem 
architecture 

(iCore 7)
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Multithreading

• Multiple threads of 
execution within a single 
process

• All threads share the 
same memory space

• Requires synchronization 
locks to protect shared 
variables

54

Illustration from Metaheuristics - From design to implementation
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Memory wall

• High bandwidth
✓ to quickly transfer large messages

• Low latency
✓ to be able to send many short messages

55

latency message transfer

start 
sending

start 
receiving
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Memory access balance

• Some architecture deliberately choose 
slower CPUs to better balance access time 
between shared and distributed memory
✓ for example the Blue Gene architecture from IBM

56

CPUs consume less power;
so they can put more inside
a cabinet!
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Message Passing 
Interface (MPI)

• Standard specification for message 
passing libraries
✓ practical

✓ portable

✓ efficient

✓ flexible

• Interfaces in C, C++, and Fortran
✓ also some support for other languages

57
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Program structure

• The same program 
runs on many process

• Each process has a 
unique ID called the 
MPI rank

• Messages can be 
send or received by 
ranks or by group of 
ranks 

58
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Communicators
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Buffering
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Blocking vs non blocking

• Blocking:
✓ a send will only return when it is safe to reuse the 

message buffer

✓ a receive only returns after data has arrived and is 
ready to use

• Non blocking:
✓ send and receive will return almost immediately

✓ if no data is available, receive returns with fail status

✓ user cannot predict when operations will be complete
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Conclusion

• EAs are both powerful and diverse

• But they require much computational 
effort to solve real world problems 

• However, they are also embarrassingly 
parallel!

• Great speedups are achievable using 
parallel architectures
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Part II: tools

• Hardware: colossus
✓ CLUMEQ

• Software 
✓ requirements

✓ survey

• Open BEAGLE
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Hardware requirements

• EAs are compute intensive,
✓ but embarrassingly parallel!

• Real world problems are hard,
✓ because solution spaces are vast 

✓ and objectives are many

• Clock frequencies are not expected to increase,
✓ but processors are now multicore

• Tools should be designed from the start to 
efficiently exploit parallelism
✓ I wish everything could be "automagic"!
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CLUMEQ

• Consortium of 11 universities in the 
province of Québec, Canada
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Compute Canada
The national HPC platform

68

Compute Canada — Calcul Canada
A proposal to the

Canada Foundation for Innovation – National Platforms Fund

Hugh Couchman (McMaster University, SHARCNET)
Robert Deupree (Saint Mary’s University, ACEnet)
Ken Edgecombe (Queen’s University, HPCVL)
Wagdi Habashi (McGill University, CLUMEQ)
Richard Peltier (University of Toronto, SciNet)
Jonathan Schaeffer (University of Alberta, WestGrid)
David Sénéchal (Université de Sherbrooke, RQCHP)

Executive Summary

The Compute/Calcul Canada (CC) initiative unites the academic high-performance comput-
ing (HPC) organizations in Canada. The seven regional HPC consortia in Canada —ACEnet,
CLUMEQ, RQCHP, HPCVL, SciNet, SHARCNET and WestGrid— represent over 50 institutions
and over one thousand university faculty members doing computationally-based research. The
Compute Canada initiative is a coherent and comprehensive proposal to build a shared distributed
HPC infrastructure across Canada to best meet the needs of the research community and en-
able leading-edge world-competitive research. This proposal is requesting an investment of 60 M$
from CFI (150 M$ with matching money) to put the necessary infrastructure in place for four
of the consortia for the 2007-2010 period. It is also requesting operating funds from Canada’s
research councils, for all seven consortia. Compute Canada has developed a consensus on national
governance, resource planning, and resource sharing models, allowing for effective usage and man-
agement of the proposed facilities. Compute Canada represents a major step forward in moving
from a regional to a national HPC collaboration. Our vision is the result of extensive consultations
with the Canadian research community.
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Québec site

• Silo of a decommissioned 
Van de Graaff particule 
accelerator

• Recycled as a cooling 
enclosure for a 
supercomputer
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Concept

• Unique in the world

• Compute racks arranged 
in a cylindrical topology

• Inner hot-air core

• Outer cold air ring-shape 
plenum
✓ low air velocity, because of high 

cross-section

✓ no corners to produce turbulence
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Main specifications

• up to 56 standard size racks 
on 3 levels

• up to 1.2 megawatts of 
power & cooling

• up to 132,500 CFM of 
blowing power

• very efficient cooling system
✓ capable of recycling heat 

✓ capable of free air cooling
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Colossus cluster

• Sun constellation system
✓ 10 fully loaded Sun Blade 6048, with X6275 modules

(double Nehalem EP blade, 2.8GHz, 24GB of RAM)

✓ full-bisection IB-QDR interconnect (2xM9 switches)

✓ 1 PB of Lustre storage in a high availability 
configuration, using 2 MDS and 9x2 OSS

✓ Sun J4400 storage arrays
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• 40 infrastructure nodes

• 960 compute nodes

• 1920 CPU sockets (Nehalem-EP 2.8GHz)

• 7680 processor cores

• about 23 TB of RAM

• 500 TB of disk (will be upgraded to 1 PB)

• Full bisection 40 Gb/sec networking 
between compute nodes (no bottlenecks)

• 10 Gb/sec Ethernet to the university 
backbone
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8123

Second floor contains 
all compute racks + 

core networking 
switches 

First floor contains 
file system & 

infrastructure nodes

Racks aligned in a 
circle around a 

central hot core; 
outside ring is a 
cold air plenum
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9166

Full bisection topology!
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• Compute nodes:
✓ 36.6 < STREAM < 37.9 GB/s

✓ SPECint = 233

✓ 189 < SPECfp < 190

• Interconnect:
✓ MPI ping-pong latency < 2 usec

✓ MPI ping-pong bandwidth > 3.1 GB/s

✓ MPI all-to-all bandwidth > 1.1 GB/s

✓ iPerf > 9.2 Gb/s
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• Lustre file system (18 OSS):
✓ IOR read performance = 33.6 GB/s

✓ IOR write performance = 17.3 GB/s

✓ all over IB

• Boot time: 4 minutes 58 seconds
✓ all over IB

• Max power HPL: 332 kW
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AMD
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Nehalem architecture
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Part II: tools

• Hardware: colossus
✓ CLUMEQ

• Software 
✓ requirements

✓ survey

• Open BEAGLE
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READ tools

• Research through EA requires quick 
prototyping

• Tools should be:
✓ simple

✓ flexible

✓ well documented

✓ (reasonably) efficient

• KISS: Keep It Simple and Stupid!
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Software requirements

• Code reuse

• Flexibility and adaptability

• Transparency

• Portability

• Ease of use and efficiency

108

Christian Gagné and Marc Parizeau, "Genericity in Evolutionary 
Computation Software Tools: Principles and Case Study", International 
Journal on Artificial Intelligence Tools, vol. 15, no 2, pp. 173-194, April 2006.
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Survey
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Open BEAGLE

110

Beagle
Engine is an
Advanced
Genetic
Learning
Environment

Beagle est un
Environnement d'
Apprentissage
Génétique
Logiciel
Evolué

http://beagle.gel.ulaval.ca/
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HMS Beagle
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Framework
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Intelligent pointer / 
reference counting
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Figure 3.2: Relation between objects and smart pointers.

problems, there is a templated class, PointerT, that defines the pointer unreferencing operators

to the desired type.

template <class T, class BaseType>

class PointerT : public BaseType {

public:

inline T& operator*();

inline T* operator->();

};

The PointerT template also emulates the mechanism of automatic pointer type binding for

inheritance-related classes. This allows a compile-time binding of T-type smart pointers that

inherit from the BaseType, when a BaseType object is needed. For example, suppose a method

taking an argument of the type Base::Handle, which is a smart pointer to an object instance

of the class Base. With the automatic type binding of smart pointer, the method can get

as argument a smart pointer to the type Derived::Handle, supposing that the class Derived

inherits from the class Base. This can be done without any explicit cast of the smart pointers.

PointerT has two templated parameters: the type of object handled, the T-type, and the parent

type of the smart pointer, the BaseType. The BaseType is useful for the automatic type binding

emulation by inheritance.

For each class of Open BEAGLE, the nested type Handle is declared. This is the type of

handle to the class, that is, a smart pointer that gives exact reference type. Usually, this type

is simply declared as a synonym of a parametrized PointerT.

class AnyClass : public SuperClass {

public:

typedef PointerT<AnyClass,SuperClass::Handle> Handle;

...

};
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Base class

114

namespace Beagle {
class Object {
public:

unsigned int getRefCounter() const;
virtual bool isEqual(const Object&) const;
virtual bool isLess(const Object&) const;
virtual void read(XMLNode::Handle&);
Object* refer();
void unrefer();
virtual void write(XMLStreamer&) const;

private:
unsigned int mRefCounter;

};
}
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Object factories

115

class Allocator : public Object {

public:

virtual Object* allocate() const =0;

virtual Object* clone(const Object&) const =0;

virtual void copy(Object&, const Object&) const =0;

};

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Base type wrappers

116

C++ name Wrapper name
bool Bool
char Char
double Double
float Float
int Int
long Long
short Short
std::string String
unsigned char UChar
unsigned int UInt
unsigned long ULong
unsigned short UShort
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Architecture
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Examples

• One max problem
✓ simple bit string representation

✓ find the individual that has the maximum number of 
"ones"

✓ classical example of genetic algorithm

• Symbolic regression
✓ parse tree representation

✓ given a set of points corresponding to an unknown 
function, find the symbolic expression of this function

✓ classical example of genetic programming
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BEAGLE examples

119
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Example 1
One max problem
• Representation:
✓ bit string

• Objective function:
✓ maximize number of one bits

• Headers:
#include "beagle/GA.hpp"
#include "OneMaxEvalOp.hpp"

using namespace std;
using namespace Beagle;
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int main(int argc, char** argv)
{
! try {
! ! // 1- Build the system
! ! System::Handle lSystem = new System;
! ! // 2- Install the GA bit string package
! ! const unsigned int lNumberOfBits = 50;
! ! lSystem->addPackage(new GA::PackageBitString(lNumberOfBits));
! ! // 3- Add evaluation operator allocator
! ! lSystem->setEvaluationOp("OneMaxEvalOp", new OneMaxEvalOp::Alloc);
! ! // 4- Initialize the evolver
! ! Evolver::Handle lEvolver = new Evolver;
! ! lEvolver->initialize(lSystem, argc, argv);
! ! // 5- Create population
! ! Vivarium::Handle lVivarium = new Vivarium;
! ! // 6- Launch evolution
! ! lEvolver->evolve(lVivarium, lSystem);
! } catch(Exception& inException) {
! ! inException.terminate(cerr);
! }
! return 0;
}
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class OneMaxEvalOp : public Beagle::EvaluationOp
{
public:

//! OneMaxEvalOp allocator type.
typedef Beagle::AllocatorT<OneMaxEvalOp,Beagle::EvaluationOp::Alloc> Alloc;
//! OneMaxEvalOp handle type.
typedef Beagle::PointerT<OneMaxEvalOp,Beagle::EvaluationOp::Handle> Handle;
//! OneMaxEvalOp bag type.
typedef Beagle::ContainerT<OneMaxEvalOp,Beagle::EvaluationOp::Bag> Bag;

explicit OneMaxEvalOp() : EvaluationOp("OneMaxEvalOp") { }

virtual Fitness::Handle evaluate(Individual& inIndividual,
                              Context& ioContext) 

{
Beagle_AssertM(inIndividual.size() == 1);
GA::BitString::Handle lBitString = castHandleT<GA::BitString>
                                   (inIndividual[0]);
unsigned int lCount = 0;
for(unsigned int i=0; i<lBitString->size(); ++i) {
   if((*lBitString)[i] == true) ++lCount;
}
return new FitnessSimple(float(lCount));

}
};
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void GA::PackageBitString::configure(System& ioSystem)
{
! Beagle_StackTraceBeginM();
! Factory& lFactory = ioSystem.getFactory();

! // Add available operators to the factory
! lFactory.insertAllocator("GA::CrossoverOnePointBitStrOp",
                             new GA::CrossoverOnePointBitStrOp::Alloc);
! lFactory.insertAllocator("GA::CrossoverTwoPointsBitStrOp", 
                             new GA::CrossoverTwoPointsBitStrOp::Alloc);
! lFactory.insertAllocator("GA::CrossoverUniformBitStrOp", 
                             new GA::CrossoverUniformBitStrOp::Alloc);
! lFactory.insertAllocator("GA::InitBitStrOp", 
                             new GA::InitBitStrOp::Alloc);
! lFactory.insertAllocator("GA::InitBitStrRampedOp", 
                             new GA::InitBitStrRampedOp::Alloc);
! lFactory.insertAllocator("GA::MutationFlipBitStrOp", 
                             new GA::MutationFlipBitStrOp::Alloc);

! // Set some concept-type associations
! lFactory.setConcept("CrossoverOp", "GA::CrossoverUniformBitStrOp");
! lFactory.setConcept("Genotype", "GA::BitString");
! lFactory.setConcept("InitializationOp", "GA::InitBitStrOp");
! lFactory.setConcept("MutationOp", "GA::MutationFlipBitStrOp");

! Beagle_StackTraceEndM("void GA::PackageBitString::configure(System&)");
}
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• OB is very flexible and very modular
✓ simple to use for predefined EAs

✓ all components can be redefined

✓ many other features not illustrated like introspection, 
config files, checkpointing, logging, statistics, etc. 

• But syntax is sometimes heavy

• Complexity stems from the limitations of 
the underlying language: C++
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Example 2
Symbolic regression
• Representation:
✓ parsed tree of primitives

• Objective: 
✓ minimize mean square error between the problem's 

sample points and the "discovered" function

• Headers:
#include "beagle/GP.hpp"
#include "SymbRegEvalOp.hpp"

using namespace std;
using namespace Beagle;

125

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

Specify the available 
set of primitives
int main(int argc, char *argv[])
{
! try {
! ! // 0- Build set of primitives
! ! GP::PrimitiveSet::Handle lSet = new GP::PrimitiveSet;
! ! lSet->insert(new GP::Add);
! ! lSet->insert(new GP::Subtract);
! ! lSet->insert(new GP::Multiply);
! ! lSet->insert(new GP::Divide);
! ! lSet->insert(new GP::Sin);
! ! lSet->insert(new GP::Cos);
! ! lSet->insert(new GP::Exp);
! ! lSet->insert(new GP::Log);
! ! lSet->insert(new GP::TokenT<Double>("X"));
! ! lSet->insert(new GP::EphemeralDouble);

...
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! ! ...
// 1- Build a system with the "constrained" GP package

! ! System::Handle lSystem = new System;
! ! lSystem->addPackage(new GP::PackageBase(lSet));
! ! lSystem->addPackage(new GP::PackageConstrained);

! ! // 2- Add data set for regression component
! ! lSystem->addComponent(new DataSetRegression);

! ! // 3- Add evaluation operator allocator
! ! lSystem->setEvaluationOp("SymbRegEvalOp", 
                               new SymbRegEvalOp::Alloc);
! ! // 4- Initialize the evolver
! ! Evolver::Handle lEvolver = new Evolver;
! ! lEvolver->initialize(lSystem, argc, argv);

! ! // 5- Create population
! ! Vivarium::Handle lVivarium = new Vivarium;

! ! // 6- Launch evolution
! ! lEvolver->evolve(lVivarium, lSystem);

! } catch(Exception& inException) {...}
! return 0;
}
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Fitness::Handle 
SymbRegEvalOp::evaluate(GP::Individual& inIndividual,
                        GP::Context& ioContext)
{
! double lSquareError = 0.;
! for(unsigned int i=0; i<mDataSet->size(); i++) {
! ! Beagle_AssertM((*mDataSet)[i].second.size() == 1);
! ! const Double lX((*mDataSet)[i].second[0]);
! ! setValue("X", lX, ioContext);
! ! const Double lY((*mDataSet)[i].first);
! ! Double lResult;
! ! inIndividual.run(lResult, ioContext);
! ! const double lError = lY-lResult;
! ! lSquareError += (lError*lError);
! }
! const double lMSE  = lSquareError / mDataSet->size();
! const double lRMSE = sqrt(lMSE);
! const double lFitness = 1. / (1. + lRMSE);
! return new FitnessSimple(lFitness);
}
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• Essentially, you need only to change the 
package to include new operators

• These operators will split the population into 
groups of individuals and distribute them to 
worker nodes in order to evaluate their fitness

• The distribution process use MPI to 
communicate with worker nodes

• Distribution is thus transparent, but not very 
flexible
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What about distributed 
BEAGLE?
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Conclusion

• EAs are fundamentally simple, but writing EA 
programs is not always easy
✓ frameworks are complex; documentation is not good enough

• Parts of EAs may be compute intensive, but most 
of the code is complex glue

• Object oriented programming is good, but strongly 
typed languages are a pain!
✓ higher level languages can significantly increase programmer 

efficiency and thus lower prototype development time

• Task parallelism must be built-in the framework 
from the start, not an afterthought!
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Part III: architecture

• Why Python?

• DTM: Distributed task Manager

• EAP: Evolutionary Algorithms in Python

• DTM+EAP=DEAP: Distributed 
Evolutionary Algorithms in Python

• DEAP optimization and problem solving?
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Python language

• Object oriented; fully dynamic

• Coherent syntax

• High level data structures

• Extensive libraries to do mostly anything

• Easy interface to other programming 
languages like C, C++ or java

• Supports UTF-8 out-of-the-box

• Very efficient glue language!
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Python's advantage?

• The language is so powerful and 
straightforward that you can code your 
own evolutionary algorithm explicitly 
(almost like pseudo-code), and control 
every detail of it!

• Or you can hide as much detail as you 
want, like how to assign tasks to CPUs in 
a parallel computer...

133

3rd International Seminar on New Issues in Artificial Intelligence
CAOS - EVANNAI - GIAA - PLG / February 2010

• Less lines of codes means:
✓ better readability

✓ less bugs

✓ better documentation!

• Python brings better matlab than 
Matlab without having to pay for 
licences!
✓ SciPy, NumPy & matPlotLib

• Want to write platform independent 
GUIs with...
✓ Qt? FLTK? OpenGL?

• Want to communicate using...
✓ posix sockets? MPI? 

• Want to build databases or web 
services?
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Distributed Task 
Manager (DTM)

• What we want to achieve:
✓ decide at one point in the code that some task(s) 

should be executed by another process

✓ not worry about where the tasks will execute

✓ not worry about load balancing of tasks

✓ have the option of exploiting transparently anything 
from a single processor to thousands of them

✓ for debugging, have the possibility of monitoring 
what is going on!
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What about performance?

• No free lunch!

• Real world EC problems have CPU intensive 
components, but most of the more complex 
lines of code are just glue representing a 
small percentage of the total run time
✓ CPU intensive parts should not be coded in Python

• Python interfaces well with other languages

• Programmer/researcher time is much more 
precious than computer time
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What about task 
granularity?

• No free lunch!

• We leave it to the user to experiment and 
decide

• Obviously, it is a question of bandwidth 
and latency
✓ you want relatively small communication overheads
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What about 
existing tools?
• Python has everything that is needed
✓ multithreading classes that run over native OS thread

✓ interface to C/C++ MPI

✓ "pickling" of objects for serialization of everything

✓ just need to write a little bit of glue ;-)

• Many tools have been developed
✓ Intel Cilk++ and Ct

✓ lots of grid stuff

✓ some in Python

• But nothing worth not writing our own
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Evil GIL!

• Also called Python's GIL of doom!
✓ GIL=Global Interpreter Lock

✓ threads are pre-empted 

✓ but the interpreter cannot run them in parallel on 
multicore computers

• Solution:
✓ use multiprocessing; one process per core

✓ in a "share nothing" architecture

✓ using message passing
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• Contains...
✓ a unique ID

✓ the ID of its parent

✓ a task type label

✓ a creation, start, and ending time stamp

• Has a run method that receives an 
argument list
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• The "execution thread" handles the 
currently running task
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• The "pending execution queue" contains the 
tasks that are waiting for execution

• It is a priority queue
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• The "pending results queue" contains the 
tasks that have been halted, because 
they await some result(s)
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• The "input/output MPI threads" 
respectively run the MPI receive/send 
commands
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• Initializations

• If MPI rank = 1
✓ do some more initialization

✓ launch root task

✓ for example:
dtm.spawn(distributedGA, lTools, lPop, 0.5, 0.2, 40)

• Inside the root task (for example):
lChilds = [dtm.spawn(toolbox.evaluate, lInd) for lInd 
in population]
lData = yield ('waitFor', lChilds)
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• Currently, once a task starts executing within a 
given process, it will remain on that process until 
completion

• But when a task is spawn, it is randomly assigned 
to one of the processes that have lower loads

• Each a process communicates with another 
process, they exchange historical load statistics

• For tasks in the pending execution queue, the 
load is estimated using the task type label
✓ it is assumed that task with equal labels have similar run times
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Evolutionary Algorithms
in Python (EAP)
• Fitness
✓ just an array of floats

• Individual
✓ just a sequence (list) of stuff, and a fitness

• Population
✓ just a set (list) of either individuals or sub-populations 

(demes)

• Toolbox
✓ just a bunch of registered operators that can be used by 

the evolutionary algorithm
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Fitness

• A class derived from a simple array of 
floats
class Fitness(array.array):

def isValid(self):
def invalidate(self):
def isDominated(self, other):

✓ works the same way for single or multiple values 
(objectives)
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Maximize or minimize?

• The Fitness constructor has an optional 
argument to assign weights to the 
different objectives
✓ +1 (default) indicates that the corresponding 

component should be maximized

✓ -1 indicates minimization

def __init__(self, weights=(-1.0,)):
self.mWeights = array.array('d', weights)
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Individual

• A container class derived from a list of 
things; the kind of "things" being 
specified by a generator function...
class Individual(list):

def __init__(self, size=0, generator=None,
             fitness=None):
   if fitness is not None:
      self.mFitness = fitness()
   for i in xrange(size):
      self.append(generator.next())
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Population

• A container class derived from a list of 
"things"; the kind of things being 
specified by an object...
class Population(list):
def __init__(self, size=0, generator=None):

for i in xrange(size):
  self.append(generator())
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Toolbox

• Just a factory to manufacture evolutionary 
methods:
class Toolbox(object):

def register(self, methodName, method, *args, **kargs):
def unregister(self, methodName):

• Toolset examples:
def tournSel(individuals, n, tournSize=2):
def wheelSel(individuals, n):
def onePointCx(indOne, indTwo):
def twoPointsCx(indOne, indTwo):
def pmxCx(indOne, indTwo):
def flipBitMut(individual, prob):
def gaussMut(individual, sigma, prob):
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import eap.base as base
import eap.toolbox as toolbox

# create toolbox
lTools = toolbox.Toolbox()

# populate toolbox with fitness, individual,
# and population creators
lTools.register('fitness', base.Fitness, 
                weights=(1.0,))
lTools.register('individual', base.Individual, 
                size=100, fitness=lTools.fitness,
                generator=base.booleanGenerator())
lTools.register('population', base.Population,
                size=300, generator=lTools.individual)

# create the initial population
lPop = lTools.population()
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# define the evaluation method
def evalOneMax(individual):

if not individual.mFitness.isValid():
individual.mFitness.append(individual.count(True))

# populate toolbox with evolutionary operators
lTools.register('evaluate', evalOneMax)

lTools.register('crossover', toolbox.twoPointsCx)

lTools.register('mutate', toolbox.flipBitMut, 
                flipIndxPb=0.05)

lTools.register('select', toolbox.tournSel, 
                tournSize=3)

# Evaluate the initial population
map(lTools.evaluate, lPop)
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CXPB, MUTPB, NGEN = (0.5, 0.2, 40)

for g in range(NGEN):
    print 'Generation', g

    lPop[:] = lTools.select(lPop, n=len(lPop))

    # Apply crossover and mutation
    for i in xrange(1, len(lPop), 2):
        if random.random() < CXPB:
            lPop[i - 1], lPop[i] = lTools.crossover(lPop[i - 1], lPop[i])
    for i in xrange(len(lPop)):
        if random.random() < MUTPB:
            lPop[i] = lTools.mutate(lPop[i])

    # Evaluate the population
    map(lTools.evaluate, lPop)

    # Gather all the fitnesses in one list and print the stats
    lFitnesses = [lInd.mFitness[0] for lInd in lPop]
    print '\tMin Fitness :', min(lFitnesses)
    print '\tMax Fitness :', max(lFitnesses)
    print '\tMean Fitness :', sum(lFitnesses)/len(lFitnesses)

print 'End of evolution'
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OneMax short example

import eap.base as base
import eap.algorithms as algorithms
import eap.toolbox as toolbox
                
def evalOneMax(individual):
    if not individual.mFitness.isValid():
        individual.mFitness.append(individual.count(True))

lTools = toolbox.Toolbox()
lTools.register('fitness', base.Fitness, weights=(1.0,))
lTools.register('individual', base.Individual, size=100,
                fitness=lTools.fitness, generator=base.booleanGenerator())
lTools.register('population', base.Population, size=300,
                generator=lTools.individual)
lTools.register('evaluate', evalOneMax)
lTools.register('crossover', toolbox.twoPointsCx)
lTools.register('mutate', toolbox.flipBitMut, flipIndxPb=0.05)
lTools.register('select', toolbox.tournSel, tournSize=3)

lPop = lTools.population()
algorithms.simpleGA(lTools, lPop, cxPb=0.5, mutPb=0.2, nGen=40)
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def simpleGA(toolbox, population, cxPb, mutPb, nGen):
# Evaluate the initial population
map(toolbox.evaluate, population)
# run the evolution loop
for g in range(nGen):

print 'Generation', g
population[:] = toolbox.select(population, n=len(population))
# Apply crossover and mutation
for i in xrange(1, len(population), 2):
  if random.random() < cxPb:
  population[i - 1], population[i] = toolbox.crossover(population
  [i-1], population[i])
for i in xrange(len(population)):
  if random.random() < mutPb:
  population[i] = toolbox.mutate(population[i])
# Evaluate the population
map(toolbox.evaluate, population)
# Gather all of the fitness values in one list and print 
statistics
lFitnesses = [lInd.mFitness[0] for lInd in population]
print '\tMin Fitness :', min(lFitnesses)
print '\tMax Fitness :', max(lFitnesses)
print '\tMean Fitness :', sum(lFitnesses)/len(lFitnesses)

print 'End of evolution'
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from mpi4py import MPI
import eap.base as base
import eap.toolbox as toolbox

def evalOneMax(individual):
if not individual.mFitness.isValid():

yield individual.count(True)

if MPI.COMM_WORLD.Get_rank() == 0:
lTools = toolbox.Toolbox()
lTools.register('fitness', base.Fitness, weights=(1.0,))
lTools.register('individual', base.Individual, size=100,\
                fitness=lTools.fitness, generator=base.booleanGenerator())
lTools.register('population', base.Population, size=300,\
                generator=lTools.individual)

lTools.register('evaluate', evalOneMax)
lTools.register('crossover', toolbox.twoPointsCx)
lTools.register('mutate', toolbox.flipBitMut, flipIndxPb=0.05)
lTools.register('select', toolbox.tournSel, tournSize=3)

lPop = lTools.population()
dtm.spawn(distributedGA, lTools, lPop, 0.5, 0.2, 40)
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def distributedGA(toolbox, population, cxPb, mutPb, nGen):
# Evaluate the population
map(toolbox.evaluate, population)

# Begin the evolution
for g in range(nGen):

print 'Generation', g
population[:] = toolbox.select(population, n=len(population))

# Apply crossover and mutation
for i in xrange(1, len(population), 2):
   if random.random() < cxPb:
   population[i - 1], population[i] = toolbox.crossover(population[i - 1],
                                                        population[i])
for i, ind in enumerate(population):
   if random.random() < mutPb:
   population[i] = toolbox.mutate(ind)

# Distribute the evaluation
lChilds = [dtm.spawn(toolbox.evaluate, lInd) for lInd in population]
lData = yield ('waitFor', lChilds)
for i, lID in enumerate(lChilds):
   population[i].mFitness.append(lData[lID])

# Gather all fitness values in one list and print statistics
lFitnesses = [lInd.mFitness[0] for lInd in population]
print '\tMin Fitness :', min(lFitnesses)
print '\tMax Fitness :', max(lFitnesses)
print '\tMean Fitness :', sum(lFitnesses)/len(lFitnesses)

        
print 'End of evolution'
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• Need to...
✓ build the set of primitives

✓ build the set of terminals

✓ define the evaluation function

✓ register everything

✓ and call the "simpleGA" algorithm

• Import modules:
import sympy
import random
import math
import eap.base as base
import eap.toolbox as toolbox
import eap.algorithms as algorithms
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Primitives and terminals

# define primitives
def add(left, right):
    return left + right
def sub(left, right):
    return left - right
def mul(left, right):
    return left * right
def rdiv(left, right):
    return sympy.nsimplify(left/right)

def randomCte():
    return random.randint(-1,1)

# add primitives and closures to their respective list
lFuncs = [add, sub, mul, rdiv]
# defines symbols that will be used in the expression
lSymbols = [sympy.Symbol('x')]
# define terminal set
lTerms = [sympy.Rational(1)]
# add the symbols to the terminal set as 0-arity functions.
lTerms.extend([lambda: symb for symb in lSymbols])
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Toolbox initialization

lTools = toolbox.Toolbox()

lTools.register('fitness', base.Fitness, weights=(-1.0,))
lTools.register('expression', base.expressionGenerator, 
                funcSet=lFuncs,termSet=lTerms, maxDepth=3)
lTools.register('individual', base.IndividualTree,
                fitness=lTools.fitness, 
                generator=lTools.expression())
lTools.register('population', base.Population, size=100,
                generator=lTools.individual)

lTools.register('select', toolbox.tournSel, tournSize=3)
lTools.register('crossover', toolbox.uniformOnePtCxGP)
lTools.register('mutate', toolbox.uniformTreeMut,
                treeGenerator=lTools.expression, depthRange=(0,2))
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def evalSymbReg(individual, symbols):
if not individual.mFitness.isValid():

# Simplify the expression by collecting the terms
expr = individual.evaluate()
# Transform expression in a callable function
lFuncExpr = sympy.lambdify(symbols, expr)
lDiff = 0
# Evaluate the sum of squared difference 
# real function : x**4 + x**3 + x**2 + x + 1
for x in xrange(-100,100):
   x = x/100.
   try:
      lDiff += (lFuncExpr(x)-(x**4 + x**3 + 
               x**2 + x + 1))**2
   except ZeroDivisionError:
      lDiff += ((x**4 + x**3 + x**2 + x + 1))**2

individual.mFitness.append(lDiff)
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DEAP philosophy

• Transparent and minimalist design
✓ not a blackbox design!

✓ not bloated with specialized features,

✓ but generic enough to build sophisticated specialized 
distributed evolutionary algorithms

✓ you want to visualize your complete evolutionary 
algorithm on one page

✓ you are exposed to the level of details that you 
decide

✓ you have complete control if you want it!
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To do list

• This is a work in progress...
✓ implement multiobjective and co-evolution

✓ develop other advance algorithms

✓ develop utility functions like checkpointing and logging 
(easy in Python), etc.

✓ develop monitoring tools for DTM

• Currently working on the project
✓ 1 undergraduate (part-time)

✓ 2 masters (part-time)

• Soon three or four PhDs will be using it for their research 
projects

• Project started last summer; development is now ramping 
up quickly!
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Questions?


