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ABSTRACT
In this paper we introduce a Multi-agent system that uses
Reinforcement Learning (RL) techniques to learn local nav-
igational behaviors to simulate virtual pedestrian groups.
The aim of the paper is to study empirically the validity
of RL to learn agent-based navigation controllers and their
transfer capabilities when they are used in simulation envi-
ronments with a higher number of agents than in the learned
scenario. Two RL algorithms which use Vector Quantiza-
tion (VQ) as the generalization method for the space state
are presented. Both strategies are focused on obtaining a
good vector quantizier that represents adequately the state
space of the agents. We empirically state the convergence of
both methods in our navigational Multi-agent learning do-
main. Besides, we use validation tools of pedestrian models
to analyze the simulation results in the context of pedes-
trian dynamics. The simulations carried out, scaling up the
number of agents in our environment (a closed room with a
door through which the agents have to leave), have revealed
that the basic characteristics of pedestrian movements have
been learned.

Categories and Subject Descriptors
I.2.11, I.2.6, I.6.5 [Multiagent Systems, Learning, Sim-

ulation and Modeling]:

General Terms
Experimentation

Keywords
Reinforcement learning, pedestrian simulation, state gener-
alization

1. INTRODUCTION
Controlling the movement of virtual agents groups to pro-

vide simulations with behavioral quality is an active research
problem that has mainly attracted Artificial Intelligence and
Computer Graphics techniques and methods. Multi-agent
systems are a natural framework for this problem. A Multi-
agent system is composed of autonomous entities named
agents that interact each other sharing a common environ-
ment which they represent through a state and upon which
they act with actions. In the simulation field they can be

used in simulating virtual crowds or group-level behaviors
for computer games, training systems and for studying archi-
tectural and urban designs. They constitute a local or agent-
based approach to the problem opposite to macroscopic ap-
proaches in which the state of the system is described by
mass densities and a corresponding locally averaged veloc-
ity [13]. In local approaches, the complexity of the problem,
the dynamic environment or the possibility that unforeseen
situations occur, make the solutions based on a priori de-
sign (like rule-based systems), difficult to tune. Besides, the
replication of the same rule set in all the agents can create
unrealistic simulations. In this context, Multi-agent learn-
ing systems, where each agent learns individually from its
own experience, are an interesting alternative.

A RL-based agent learns by interacting with the environ-
ment. In response to the actions of the agent, the environ-
ment provides it with a reward signal that models the task
to be learned. In the value-based family of RL algorithms,
rewards are used by the agent to estimate the value of the
decisions that it is taking in specific states. In this paper we
focus on Temporal Difference Methods (TD Methods) [16]
which have proven useful in a variety of domains.

Markov games are the natural extension of the single RL
problem for Multi-agent RL systems (MARL). This frame-
work allows to define the whole range of collective situations
from fully-cooperative to non-cooperative games including
general-sum games (see [10] for a review). Markov games
use the joint actions (the cartesian product of the agents’
actions) as part of the definition of the state-action space.
Unfortunately, the exponential dependence in the number of
agents and the necessity of converging to equilibrium as a
basic stability requirement of these games, increase consider-
ably the computational cost of the learning process. On the
other hand, Multi-agent systems where the agents are inde-
pendent learners have been studied in several works. In [11]
and [14] independent RL processes are associated to robots
in a group for grasping and navigation problems. [3] em-
pirically shows that convergence is possible in cooperative
settings for a Multi-agent system with independent RL pro-
cesses. Recently, a small case study that applies independent
learning in a Multi-agent RL problem for crowd simulation
has been presented [18].

In this paper we study the feasibility of building a com-
plex MARL oriented to learn realistic behaviors of virtual
agents for pedestrian simulation. The aim is to introduce RL



as a useful technique to find an agent-based control model
to cope with the problem of simulating virtual agents that
behave as groups of pedestrians. Realistic behavior means
that agents appear to behave as pedestrians but they do not
need necessarily conform to the characteristics of the models
of real pedestrians. However, we use validation tools used
in pedestrian models to quantify the overlaps between these
models and our results.

Learning how to navigate in a continuous space towards
a goal in an environment with other agents and using colli-
sion detection is not a trivial task. We propose two different
learning approaches based on the Vector Quantization for
Q-Learning(VQQL) [4] algorithm. These approaches are fo-
cused on finding a good state generalization as a key point to
get realistic behaviors for the virtual agents. Also we study
the scalability of the system respect to the number of agents.
The strategy consists on learning the navigational problem
with a moderate number of agents, and then transfer the
value functions [17] to scale up to many agents.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the domain and the problem modeling. Sec-
tion 3 describes the state generalization method. Section 4
describes the two algorithmic approaches to the learning
problem. Section 5 focuses on the learning experiments.
Section 6 shows the simulation and scaling results. Section 7
concludes and suggests future work.

2. THE DOMAIN
The scenario consist of a group of agents inside a closed

room with a door. The agents have to learn to reach the door
and leave the room. The agents detect collisions with other
agents and walls which are relevant in the learning process.
In order to resemble the model of pedestrians, the agents are
constrained to move on the plane with a maximum velocity
of 2.5 m/s. The environment is modeled like a two dimen-
sional continuous plane where the room, defined with five
walls, is placed. The cinematic module of the environment
moves the agents across the plane using the velocity vector
of each agent. The cinematic module actuates following a
configurable clock signal so that the user can specify the
number of decisions per second that the agent must take.

The definition of the states that the agents sensorize fol-
lows a deictic representation approach. The central premise
underlying a deictic representation is that the agent only reg-
isters information about objects that are relevant to the task
at hand [1] [19]. The selection of features that represent the
state for the agent is critic for the success of learning. We
have chosen features that provide local information about
the agent cinematic state, the neighbor agents and the near-
est walls, modeling the real situation of a pedestrian inside
a group. As a result, the state for each agent is described
by the features showed in Figure 1 and Table 1.

The number of sensorized neighbor agents and neighbor
objects is configurable. In our evaluation, the number of
sensorized neighbors is 7 and the number of sensorized static
objects (walls) is 2. Therefore, in the evaluation, the state
space has 28 features.

The agents’ actions consist on modifying its vector veloc-
ity. The agent must set two values in each decision: the
change ratio of the velocity module (increasing or reducing)
and the change ratio of the angle (positive or negative) to
modify the vector velocity. There are 8 different ratios plus
the ‘no operation” option for both the module and the angle

Sag Velocity module of the agent.
Av Angle of the velocity vector relative to the refer-

ence line.
Dgoal Distance to the goal.
Sreli Relative scalar velocity of the i-th nearest neigh-

bor.
Dagi Distance to the i-th nearest neighbor.
Aagi Angle of the position of the i-th nearest neighbor

relative to the reference line.
Dobj Distance to the j-th nearest static object (walls).
Aobj Angle of the position of the j-th nearest static

object relative to the reference line.

Table 1: Description of the features of the agent’s

state. The reference line joins the agent’s position

with its goal position.

Figure 1: Agent’s state description

resulting in 81 possible actions.

3. STATE SPACE GENERALIZATION
The states are generalized using Vector Quantization (VQ),

which has demonstrated to be an accurate approach for
state space generalization and transfer learning [6]. A vec-
tor quantizier VQ of dimension K and size N is a mapping
from a vector space (in this paper the state space) in the K-
dimensional euclidean space, Rk, into a finite set C contain-
ing N states. A sensorized state is aggregated to its nearest
state in C, also named its prototype. Thus given C and a
state x ∈ Rk then VQ(x) = arg miny∈C{dist(x, y)}. The
prototypes, that is, the members of C, are found using the
Generalized Lloyd Algorithm (K-Means) and together with
the euclidean metric, define the Voronoi regions of the state
space [4, 6]. Vector Quantization makes possible the use of
a table for representing the value function and therefore the
use of classic TD algorithms like Q-learning or Sarsa.

Vector Quantization for Q-Learning(VQQL) [4] is a learn-
ing schema that uses VQ as the generalization method for
states and the tabular version of Q-Learning for the learning
process. Tabular Q-Learning uses a table (named Q) to rep-



resent the value function and takes as entries, a prototype
and an action. For each entry of Q, the expected accumu-
lated reward of being in state s and doing action a is stored.
The process of updating the Q table with a new immediate
reward rt at instant t is named credit assignment operation,
and it is performed using Equation 1.

Q(st, at) = Q(st, at)+α[rt+1+γ max
a

{Q(st+1, a)}−Q(st, at)]

(1)
Where γ models the importance of the future reward and α
is the learning rate. In VQQL, given a sensorized state st

and a selected action at, the Q table entry to be updated is
(VQ(st), at).

The use of VQ introduces two problems. The first one is to
decide the number of prototypes to use, or the resolution of
the state space. Typically, a very coarse discretization com-
posed of a reduced number of prototypes has not enough ex-
pressiveness to represent optimal value functions. Too many
states introduces again the generalization problem, although
with a finite number of states. Therefore, VQQL has proven
in most of the domains tested that intermediate values of the
number of prototypes are more accurate than low or high
values. In our experiments, different number of prototypes
have been proved (k = 512, 1024, 2048, 4096, 8192, 16384).
The best results were achieved with 4096 prototypes, and
this configuration is used in all the experiments (despite bet-
ter results may be obtained with different values).

The second problem of VQQL is how to generate the train-
ing data to learn the prototypes. The most straightforward
way to get them is by generating random movements of the
learning agents. However, in many domains, like crowd nav-
igation, random movements of the agents generate biased
data which are not representative enough to learn accurate
value functions, as will be demonstrated empirically later.
To deal with this problem we have defined two different
learning strategies. Iterative VQQL (IT-VQQL) strategy
and Incremental VQQL (IN-VQQL) strategy, which are de-
scribed next.

4. INCREMENTAL VQQL AND ITERATIVE
VQQL

The Iterative VQQL strategy, shown in Figure 2 is in-
spired in the adaptive K-Means family of algorithms. In
adaptive K-Means, given a set of patterns or a density of
probability that generate them, the problem is to define an
optimal criterion that bias the centroids towards an optimal
partition [2]. In our approach, the dataset generation proce-
dure or the density of probability that generates the data is
biased towards a better model of the problem by using a bet-
ter learned policy. In IT-VQQL, we fix a number of agents
(specifically 20) and the learning task is refined in each it-
eration of the learning process. We use the value functions
learned in iteration step i to build a simulation and gather a
new dataset. With the new dataset, the K-Means algorithm
is used and a new set of prototypes is found, therefore a new
V i+1

Q is implemented. In the next iteration, the agents learn

from scratch using the new vector quantizier V m+1

Q , and so
on. In the first iteration, the agents make a random walk,
since the value functions are initialized to zero for all the
state and action pairs. The IT-VQQL strategy ends when a
maximum number of iterations are performed.

Multi-agent IT-VQQL

Entry: The number of learning agents, p, a deictic repre-
sentation of the state space S ∈ Rk, and a finite action
space A.

1. Set Q1
0, . . . , Q

p
0 = 0, ∀s ∈ Rk, ∀a ∈ A

2. Set i = 0

3. Repeat:

(a) Set i = i + 1

(b) Generate a new vector quantizer, V i
Q:

• Generate a training set, T i, by recording
states visited by the agents when follow-
ing and ǫ-greedy exploration strategy over
Q1

i−1, . . . , Q
p
i−1

• Learn V i
Q by executing GLA algorithm over

T i

(c) Learn the new Q tables for each agent,
Q1

i , . . . , Q
p
i , following the Q-Learning algorithm

4. Until end condition is satisfied

Return: Q1
r, . . . , Q

p
r and V i

Q

Figure 2: Iterative VQQL Algorithm

IT-VQQL is a general algorithm that could be used to
learn action policies in many domains. However, crowd nav-
igation has an additional challenge, which is the difficulty to
solve the problem from scratch. The Incremental VQQL
strategy is based on a classic approach of transfer learn-
ing in which the problem to be learned is approximated by
solving easier problems. The problem of finding a good set
of prototypes that model the state space of a domain with
a high number of agents (specifically 20) is tackled solving
successive problems with less agents. Therefore, when us-
ing IN-VQQL, learning experiments are incremental in the
number of agents. IN-VQQL, shown in Figure 3, can be seen
as an adaptation of IT-VQQL, where the number of agents
in the environment is increased in each iteration.

If the state representation of an agent includes features re-
garding with the neighbor agents, the IN-VQQL algorithm
has the additional difficulty that the state spaces in the in-
cremental learning processes have different dimensionalities.
When the problem has been learned with m agents, and the
next incremental problem with m+1 agents uses a state rep-
resentation that sensorizes more neighbor agents, we need
to use transfer learning techniques as performed for transfer
learning in domains like Keepaway [5]. Specifically, a projec-
tion is used in order to get a new dataset in the new m + 1-
agents problem state space included in Rr. A projection can
be understood as a selection of features Γ : Rr → Rs where
r > s. The projection makes possible to use the vector quan-
tizier V s

Q and the value functions Q1
m, . . . , Qm

m learned in the
m-agents problem, with the new higher-dimensional state
space to collect data. Besides, the learned value functions
are replicated to be used by the new set of agents. After
the new dataset is obtained, a new set of prototypes using



Multi-agent IN-VQQL

Entry: The number of learning agents, p, a deictic repre-
sentation of the state space S ∈ Rk, and a finite action
space A.

1. Set Q1
0, ∀s ∈ Rk, ∀a ∈ A

2. Set i = 0

3. Repeat:

(a) Set i = i + 1

(b) Generate a new vector quantizer, V i
Q:

• Generate a training set, T i, by record-
ing states visited by the current learning
agents when following and ǫ-greedy explo-
ration strategy over Q1

i−1, . . . , Q
i−1

i−1, Q
i
i =

Qj
i−1 j ∈ [1, i − 1].

• Learn V i
Q by executing GLA over T i

• Set V i
Q = V i

Q ∪ V i−1

Q

(c) Learn the new Q tables for each agent, Q1
i , . . . , Q

i
i,

following the Q-Learning algorithm

4. Until i = r

Return: Q1
r, . . . , Q

p
r and V r

Q

Figure 3: Incremental VQQL Algorithm

VQ is calculated and, therefore, a new vector quantizier V r
Q

is implemented to be used in a new learning process from
scratch.

5. LEARNING EXPERIMENTS
In our Multi-agent learning system, the agents learn si-

multaneously. This means that the learning process is di-
vided in episodes or trials and in each point of the process,
all the agents are in the same trial. Besides, considering
each trial of the learning process divided in discrete deci-
sion slots, all active agents take their decisions in the same
decision slot before going to the next one. These character-
istics warrant that the environment varies softly along the
process, a desiderable property for the convergence of the
learning process. In general, the number of decisions in a
trial is different for each agent. An agent ends its trial when
it reaches the door or after a fixed number of decisions have
been taken.

The virtual environment is a 60x100 rectangle with an
aperture that represents the door in the center of one of the
small sides. The limits of the rectangle are defined by five
walls. The agents are placed in the center of a bounding cir-
cumference with radius 0.4 meters that represents the area
occupied by the “body” of the agent. The environment has
collision detection; therefore the agents can crash against the
walls and with other agents. In a collision, the agent stops
and the other object or agent cannot go into the bounding
circumference of the agent. The cinematic module moves
each agent in the room according to its velocity. The sim-
ulation is divided in cycles limited by decision steps. The

number of decisions per second is a parameter of the system.
The state space is the same for all the agents. As stated in
Section 2, the maximum number of sensorized neighbors is
7 and the fixed number of sensorized walls is 2. There is not
a maximum distance of perception.

The behavior of the agents is modeled according to the
immediate rewards listed in Table 2. As it can be seen,
the payoff function reinforces the crash situations because
the prevention of collisions is the main task that a naviga-
tion controller must take into account. Our model is related
to pedestrian models that pay special attention to interac-
tions between pedestrians like the Social-Force [7] and the
Optimal-velocity models [12]. In these models, the velocity
vector of a pedestrian is modified using forces parameterized
by a desired velocity and the proximity to other pedestrians.
In our model, where most of the state features are related
with the sensorization of neighbor agents and walls, the neg-
ative immediate rewards provides information to learn the
mentioned forces in terms of selecting an adequate action.

Crash against other agent -4.0
Crash against a wall -15.0
Reach the goal +100.0
Default 0.0

Table 2: Inmediate rewards

5.1 Learning experiment for IT-VQQL
We have fixed a number of 20 learning agents for our ex-

periments. It is a figure that trades-off the complexity of the
problem to learn, and the necessity of a minimum density
of agents to characterize the variety of possible interactions
that can appear in a group. The dataset is gathered us-
ing a ǫ-greedy policy with ǫ = 0.07 to palliate overfiting
problems. Before using the K-Means algorithm, the col-
lected data are standardized (each feature has zero mean
and standard deviation equal to 1). We have detected em-
pirically that our vector quantiziers did not give satisfac-
tory results when the number of active agents became less
than 5, mainly in the earlier iterations of the learning pro-
cess. This can be explained considering the scarce number
of occurrences for these configurations compared with data
gathered from higher number of agents (mainly 20). The
datasets obtained in simulation have few data with these
configurations, creating a bad representation of the state
space. Although the solution of this problem is a question
of performing more iterations until we get a suitable dataset,
we have improved the speed of learning by filling the void
features of the state representation for these cases with ran-
dom valid values. In this case, the vector quantizier always
works with states with a full set of features. Thus, the be-
havior of these situations can be improved biasing the filling
values using domain knowledge. The IN-VQQL algorithm
has not this problem because the final vector quantizier is
the union of quantiziers specialized in a specific number of
agents. The curves and simulation results for the IT-VQQL
in this paper have been performed using this approach. The
performance curves for the iterative learning processes of IT-
VQQL are displayed in Figure 4. The number of trials is low
in the first curves because the goal is to get a better dataset
for the vector quantizier. The learning processes uses a ǫ-
greedy policy as the exploratory policy. The configuration



of the main parameters of Q-learning for the curve 14 (the
highest) are shown in Table 3. We use as a reference the
learning curve of the basic VQQL algorithm with the same
parameters shown in Table 3 excepting the α parameter that
has the value α = 0.25, consistent with the high number of
trials carried out by this algorithm (see Figure 5).

Figure 4: IT-VQQL performance curves for a 20

agents learning process. The longest curve corre-

sponds to the reference curve for the VQQL al-

gorithm. The rest of the curves, from down to

up looking at the end of the curve: iterations

1, 2, 3, 5, 6, 4, 7, 8, 9, 11, 10, 12, 13, 15, 14. The curves are

averages of the data for 20 learning processes

Importance of future rewards (γ) 0.91
Initial rate for Exploratory policy (ǫ) 0.4
Learning rate (α) 0.35
Decitions per second 1

Table 3: Q-Learning parameters for IN-VQQL and

IT-VQQL

The whole plot of the iterative learning process is dis-
played in Figure 5. These curves are those displayed in
Figure 4. Note the improvement in performance along the
increasing number of trials. The saw tooth pattern of the
plot is due to the fact that learning in each iteration of IT-
VQQL is performed from scratch, without transferring the
value function from iteration to iteration 1.

5.2 Learning experiment for IN-VQQL
In the incremental approach the state space is variable

in number of dimensions at different stages of the learning
process (i.e. given a learning setting of 20 agents, at the
beginning the state space will include the features to de-
scribe 7 neighbor agents, but when only one agent remains,
its state space does not have features for the description of
neighbors).

1Performing a value function transfer from each iteration to
the following could be an interesting idea. However, given
the vector quantizer used in each iteration is different, such
transfer is not trivial
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Figure 5: The whole learning process for the IT-

VQQL strategy. The curves are sorted by iteration

number inside the learning process. The dashed

curve is for the VQQL algorithm.

In our incremental learning setting, the sequence of ex-
periments performed has the following number of agents:
1, 2, 3, 4, 5, 6, 7, 8, 10 and 20. The learning performance curves
are plotted in Figure 6 together with the reference curve of
VQQL (the lower curve). Note that, given a finite number of
trials, the performance decreases with increasing the num-
ber of agents. It is caused by the increment of complexity of
the problem to be learned. Therefore, the number of trials
of the curves is incremented gradually with the number of
learning agents. Besides, it is not necessary to await the
asymptotic behavior of the curve, when the actual goal is
to find a good (not optimal) vector quantizier that improves
what already exists.
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Figure 6: IN-VQQL performance curves for 20

agents learning process. From up to down with

less than 1.5 105 trials, curves with number of agents
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trials greater than 1.2 105, the curves for 10, 20 agents.

The dashed curve of final value near 0.4, corresponds

to the VQQL algorithm. The curves are averages of

the data for 20 learning processes.

The whole plot of the incremental learning process is dis-
played in Figure 7 and, also, the curve for the VQQL algo-
rithm is plotted as a reference. Note the difference in the



number of trials with Figure 5. Each element of the saw
tooth pattern is a learning process with different number
of agents. Although it seems to be an increment of perfor-
mance from curve 8 to 9, it does not probably occur in the
asymptotic regime.
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The configuration of the main parameters of Q-learning
for the curve 10 corresponding to 20 agents is the same that
the iterative curve number 14 and the VQQL reference al-
gorithm and it is shown in Table 3.

6. SIMULATION RESULTS
In this section, we show the fundamental diagrams used in

pedestrian dynamics to analyze the simulated behavior ob-
tained by the RL agents. Pedestrian dynamics models usu-
ally focus on the qualitative reproduction of empirically ob-
served collective phenomena, like the dynamical formation of
lanes, bottlenecks, etc. In this sense, the main quantitative
characteristics for the description of pedestrian streams are
flow and density. Therefore, the main diagrams are derived
from these functions. According to the definition shown in
[8], the local density is obtained by averaging over a circular
region of radius R. The local density at place ~r = (x, y) and
time t was measured as

ρ(r, t) =
X

j

f(~rj(t) − ~r) (2)

where ~rj(t) are the positions of the pedestrians j in the
surrounding of ~r and

f(~rj(t) − ~r) =
1

πR2
exp[−||~rj − ~r||2/R2] (3)

is a Gaussian, distance-dependent weight function. The
local speeds have been defined via the weighted average

~S(~r, t) =

P

j
~vjf(~rj(t) − ~r)

P

j
f(~rj(t) − ~r)

(4)

while the flow has been determined according to the fluid-
dynamic formula

~Q(~r, t) = ρ(~r, t)~S(~r, t) (5)

Figure 8 shows this fundamental diagram for both IN/IT-
VQQL in a simulation with 100 agents randomly placed in
the environment. The first diagram (left column) shows the

average of the local speeds ~S(~r, t) as a function of the local
density ρ(r, t) for both cases. We have measured the local
density capturing the positions of the agents in a circumfer-
ence (R = 1) near the exit, so we guarantee a minimum flow
during the simulation.

Fundamental Diagrams
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Figure 8: Fundamental diagrams

The low density values offered (ρ < 1.2) are likely due
to the same effect described in [15] which states that when
the initial positions of the pedestrians are not near from
the bottleneck center, the density will decrease due to the
movement from the initial position to this point, resulting
in a smaller density. Furthermore, our aim here is neither
a deep characterization of our agent nor a comparison with
the other pedestrian models/data, but to analyze the simu-
lation results from a behavioral point of view when scaling
up the models learned. The scalability problem (increas-
ing the number of agents without losing behavioral quality
during the simulation) involves a good generalization of the
learned model, as it must face new situations, that properly
managed, will lead it to reach its goal.

The first column on Figure 8 shows how the RL controllers
(IT/IN) have learned to reduce their speed according to the
density perceived. In both cases, the data plotted indicate
that different kind of speed-reduction behaviors can be pro-
duced while the fitting functions (used only for clarity pur-
pose) let us to observe that the shape of the curves and their
tendency can be considered as reasonable.

However, there are several differences among the RL mod-
els shown in this column. Firstly, the IT model shows a re-
duced number of points comparing with the IN model. The
points plotted here can be viewed as different navigational
decisions (speed regulations) which lead the agents to reach
their goal. In this sense, the IN learned controllers seem to



be able to better generalize and scale the problem. On the
other side, the IT model results at this diagram are possibly
indicating that an overfiting situation may be happening,
due to an excessive dependency of the situations learned.
To confirm this hypothesis we have measured the number of
agents that finally evacuate the environment in both meth-
ods. The results are shown in tables 4 and 5.

Agents Fails (%) σ v (m/s) σ
20 21.5 5.7 1.64 0.82
40 13.95 3.99 1.57 0.83
60 13.63 4.42 1.40 0.83
80 19.13 3.67 1.27 0.81
100 26.75 4.35 1.19 0.79

Table 4: Performance results and average velocity

with the number of agents for the IN-VQQL algo-

rithm. Data are averages of 20 agents and 100 trials.

Agents Fails (%) σ v(m/s) σ
20 9.25 2.68 1.99 0.73
40 25.32 3.62 1.84 0.77
60 39.1 5.25 1.69 0.79
80 46.42 4.59 1.62 0.78
100 56.98 4.8 1.54 0.77

Table 5: Performance results and average velocity

with the number of agents for the IT-VQQL algo-

rithm. Data are averages of 20 agents and 100 trials.

A better performance of IT-VQQL vs. IN-VQQL has been
observed in the learning case (20 agents). The performance
of IT-VQQL is degradated faster than in the IN-VQQL when
the number of agents grows, and generalization capabilities
are needed. Obviously, the VQ state generalizer has a de-
cisive influence in these results. Also note the higher aver-
aged velocity of the agents that use the IT-VQQL learned
controllers that can produce problems when scaling up the
number of agents.

The second column on Figure 8 shows the relation among
the simulated densities and flows. The diagram reveals that
for the densities considered, the maximum flow is still no
reached so the growing trend of the curve has not ended.

We have also calculated the density maps associated to
these simulations. Here, the plane is tiled with a grid and
the number of agents per tile unit is counted. Therefore, it
is a histogram that represents the number of agents per tile
during the simulation. It gives the information of the level
of occupation of different zones of the plane so it is interest-
ing to know the bottleneck shape (Figures 9 and 10). These
figures show the typical concentration around the exit and
a continuous increasing flow towards the door, represented
as a gray degradation. An interesting thing to see is that
isolated dark grey tiles can be interpreted as places where
crashes occur and, therefore, where the agents are stopped.
Note that the greatest concentration of these isolated tiles
are near the walls, where crashes are more likely. The com-
parison between both RL models reveals the area where the
IT-VQQL model crashes frequently near the goal. This can
prevent the IT-VQQL model agents from reaching the goal.
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Figure 9: IN-VQQL Density Map for 100 agents.

Points display data of 100 simulations.
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Figure 10: IT-VQQL Density Map for 100 agents.

Points display data of 100 simulations.

7. CONCLUSIONS AND FUTURE WORK

• The experiments show that the Multi-agent navigation
problem can be faced using reinforcement learning al-
gorithms. The results have revealed that important
characteristics, like the speed control, remain when
scaling to a larger number of agents without additional
learning.

• The results indicate that the IT-VQQL learning schema
learns faster than the IN-VQQL schema. However,
when scaling up the number of agents, the IT-VQQL
schema overfits the learning problem giving worse sim-
ulation results than the IN-VQQl schema. This could
be caused by the successive refinements over the same
learning scenario in IT-VQQL.



• Classic TD single-agent algorithms like Q-learning have
been proven to converge in the limit with discrete state
and action spaces and stationary environments [9]. Con-
vergence in the limit means in practice that the learned
value functions are suboptimal. This fact does not
need to be necessarily a handicap in pedestrian sim-
ulations because, in real life, people’s behaviors do
not use optimality as the main criteria. On the other
hand, Multi-agent learning systems are inherently non-
stationary. The convergence is a domain property that
needs to be studied case-by-case. With our results we
have proved empirically that RL techniques give suffi-
cient quality in this domain and, likely, its use could
be extended to other pedestrian scenarios.

• Future work:

It is possible to unify the two learning schemas in a sin-
gle algorithmic schema. Based on the IN-VQQL algo-
rithm it is possible to consider each incremental prob-
lem subjected to a refining process. Considering the
results exposed above, a trade-off should be applied in
this scheme between adaptation and specialization ca-
pabilities. Besides, classic strategies of transfer learn-
ing could also be applied for the VQ state generalizer
and for the learned value functions in different steps of
this unified schema. Other aspect of interest is the use
of other state generalization methods (i.e. tile coding)
to compare the results.

On the other hand it is necessary to study the response
in simulation with a learning scenario with more agents.
That is, to study the performance when the number
of learning agents are 40, 80, etc. It is plausible to
expect an asymptotic behavior in the scaling capabil-
ities in this context. Other interesting subject is the
study of the capability of RL in the emergence of col-
lective pedestrian behaviors. There are several classic
well studied self-organization phenomenon that appear
in pedestrian groups inside certain scenarios (like the
zipper effect in front of a bottleneck or the formation
of lanes inside a corridor) that could be studied.
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